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Resonance Constraints on Rhythmic Movement

Paul J. Treffner and M. T. Turvey

The component frequencies of rhythmic patterns forming rational ratios, either simple (e.g.. 1:2,
1:3) or complex (e.g., 2:3, 2:5), are known as mode locks or resonances. A general theory of
resonances is provided by the circle map, the Farey series, and continued fractions. Predictions
were evaluated in which rhythms (simple and poly) were established implicitly—the subject neither
intended them nor knew their ratios. In Experiment 1, a prescribed unimanual frequency was
performed as the primary task while hearing another frequency irrelevant to the task. In Experi-
ments 2 and 3, a hand-held pendulum was oscillated at its natural frequency, while the other hand
performed the primary task of following a metronome. The frequency ratio at the outset of a trial
often changed during the trial. Consistent with the general theory, shifts were toward unimodular
ratios of the Farey tree, and Fibonacci ratios tended to shift more than non-Fibonacci ratios.

Rhythmic performances involve patterns of varying com-
plexity. Polyrhythms (ratios such as 2:3, 2:5, and 3:5) are
periodic patterns in which the respective events of the com-
ponent rhythmic units coincide only once per cycle. For ex-
ample, a 2:3 polyrhythm involves two isochronous pulse
trains such that the first completes two events in the same
duration that the second completes three events. Despite their
prominence in the music of a number of non-Western cul-
tures (Chernoff, 1979; Locke, 1982), incompatible rhythms
are difficult to produce, especially in comparison to simple
rhythms (ratios such as 1:1, 1:2, and 1:3; Ibbotson & Morton,
1981; Klapp, 1979, 1981; Klapp et al., 1985; Peters, 1977,
1980, 1981, 1985a, 1985b, 1987; Peters & Schwartz, 1989),
and fluctuations in polyrhythmic coordinations amplify with
ratio complexity (Deutsch, 1983). It has been suggested that
these observations on human rhythmic behavior are ex-
plained by the hypothesis that complex rhythmic movement
patterns are distinguished by the number of chunks required
to code them (Deutsch, 1983). For example, a bimanual
polyrhythm of 2:5 would be internally represented as [R/L—
R—R L R—R—], where R = right, L = left, R/L = right
and left simultaneous, and the dash specifies a pause. In con-
trast, a polyrhythm of 2:3 might be coded less complexly as
[R/L—R L R—]. Some investigators have tested whether
polyrhythmic performance involves the use of a type of mo-
tor organization based either on two independent paraliel
codes or on a single integrated code (Jagacinski, Marsh-
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burn, Klapp, & Jones, 1988; Klapp et al., 1985; Summers &
Kennedy, 1992). Because variability of performance in-
creases with both ratio complexity (Deutsch, 1983) and in-
tertap covariation (Jagacinski et al., 1988), some form of
parallel integration is implied in these tasks.

In this article we explore the possibility that a physical
basis underlies such an integrated motor organization based
on general principles of mode locking in nonlinear dynamical
systems. In contrast to other studies, we examine perfor-
mance under circumstances whereby the two limbs produc-
ing the polyrhythmlike movement need not both be inten-
tionally controlled by the subject. Although distinct from
intentionally produced polyrhythms, such unintended
polyrhythmlike behavior may provide insight into a generic
means of control shared by both the intended and unintended
classes of action. In the next two sections we identify these
general principles and then proceed, in the remainder of the
introduction, to identify the major predictions about simple
and polyrhythm behavior that follow from them and a basic
methodology by which the predictions can be evaluated.

Circle Maps as Characterizations of Frequency
Entrainment

When observing pendulum clocks mounted on the same
wall, one notes that when the frequency of one oscillator is
close to that of another, entrainment can occur whereby one
oscillator becomes synchronized to the frequency and phase
of the other. Such mode locking (frequency locking, phase
locking, or both) is characteristic of nonlinearly coupled os-
cillators of two or more competing frequencies. A mode lock
constitutes a resonance or attractor (Abraham & Shaw, 1992;
Jackson, 1989); one frequency may be modified in the pres-
ence of another, competing frequency to yield a new, shifted
frequency ratio.

The damped, driven pendulum is a classic example of a
nonlinear dynamical system that may be examined by nu-
merical integration of the underlying continuous differential
equation. We use the more transparent discretized version of
the system in the form of an iterated difference equation. This
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permits the state of the driven oscillator to be seen at discrete
points in time at a particular periodic phase of the driving
oscillator. The phase space for such a system of two coupled
oscillators is the cross-product of their two limit cycles, to-
pologically equivalent to a 2-torus (a doughnut-shaped mani-
fold), as depicted in Figure 1. Pictorially, the driver fre-
quency winds around the major axis of rotation of the torus
while the driven oscillator correspondingly winds around the
second, perpendicular minor axis of the torus. If the two
oscillators are p:q phase locked (e.g., 1:3 or 2:3), then as the
orbit of the driver oscillator winds p times around the torus,
its trajectory will always be intersected at the same point
every g successive cycles of the driven oscillator. If the tra-
jectory closes on itself after an integer pumber of cycles, then
periodic motion occurs. If the trajectory fails to close on
itself, but comes arbitrarily close to its previous orbits, then
there is phase drift, and the motion is called quasiperiodic,
with the trajectory eventually covering the complete surface
of the torus.

If the helical trajectory of the forced oscillator on the torus
surface is observed or “strobed” at intervals of the driver
frequency, the resultant diagram, known as a Poincaré sec-
tion, yields information on the resonance dynamics. For
phase-locked systems, the Poincaré section exhibits discrete
points distributed around the circle, the number of which
corresponds to the periodicity of the driven oscillator. That
is, the Poincaré section produces an iterative one-
dimensional discrete-time map of the closed curve in the
form of a circle. It is these iterated-map models of mode
locking that are known as circle maps. They are defined using
the phase angle of the forced oscillator, 6,, measured at the
strobed intervals, ¢, = 2mwn/w:

GH»I =f(61) = 61 + Q + g(or)? (l)
where
g(8,) = g(6,+1) (modulus 1).

From the above, the new phase 6, ., is a function f of the old
phase, the ratio of the uncoupled frequencies (2 = p/g), and

Figure I. Geometrical representation of the dynamical behavior
of two coupled oscillators, mode locked in a 1:4 (p/g) resonance.
(The mode-locked dynamics may be said to occur on a manifold
generated by the Cartesian product of two circles, that is, a 2-torus.
As the slower, driver oscillator ( p) winds around the major axis of
the torus, the faster, driven oscillator (g) simultaneously winds
around the minor axis of the torus. A 1:4 resonance is here defined
because after four cycles, the faster oscillator intersects its own
trajectory at the precise point at which, after one cycle, the slower
oscillator intersects its trajectory.)
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a nonlinear coupling between oscillators. g(8,). The coupling
£(8,) is periodic such that 6, . ; (modulus 1) represents a com-
plete phase rotation (Jensen. Bak, & Bohr, 1984).

As the circle map is iterated, the dynamics of the driven
oscillator are summarized by the “winding number,” W,
equivalent to the average number of rotations or average
phase advance per iteration. The dynamics of the driven os-
cillator may be either periodic, with a rational winding num-
ber equal to p/g defined as W(K, ) = (8, — 0,)/t in the limit
as t approaches infinity; or quasiperiodic, with an irrational
winding number. Computational implementations have usu-
ally been of the “sine circle map” and have taken the form

6,., = f(8,) = 8, + Q + (K/2) sin 276, (2)

where the coupling, K, acts as a control parameter for the
extent of mode locking. As K increases under constant {2,
corresponding, for example, to a larger amplitude of forcing,
the size of a given resonance region with W = p/g increases
even though the frequency ratio of the individual uncoupled
oscillators {1 may not itself be rational. Thus, when in a
resonance, a rational W characterizes frequency-locked dy-
namics of, for example, exactly 0.5 (1:2) even though the two
individual frequencies may have an irrational ratio p/q of
0.51327. For an appropriate selection of K and {} control
parameters, there exists a finite interval or “window” of
mode locking with W = p/q. Such stability intervals act as
attractors of nearby trajectories and when plotted in a regime
diagram (a plot of the preferred modes) with coordinates of
a control parameter (K) and frequency detuning (1), they are
known as Arnold tongues (Glass & Mackey, 1988; Jackson,
1989; Schroeder, 1991); they are shown in Figure 2. Between
every mode-locked Arnold tongue lies a quasiperiodic re-
gion. The widths of these quasiperiodic regions decrease as
K increases; when K = 1, quasiperiodic regions are
“squeezed out” and mode locking exists for every choice of
). Beyond the K = 1 line, the resonances necessarily over-
lap, which may result in deterministic chaos. This means that
the behavior of the system involves hysteretic shifting be-
tween resonances for different but arbitrarily small initial
phases (Jensen et al., 1984; Schuster, 1988). Although ap-
parently random, such dynamics are completely determined
by the equation of motion.

Farey Tree Description of Resonance Layout

A central feature of both numerical and empirical mode-
locking experiments is the ability to characterize the pattern
of mode locks by an elegant number theoretical construction
called the Farey series (Hardy & Wright, 1938; Haucke &
Ecke, 1987; Maselko & Swinney, 1985; Schroeder, 1984,
1991; Stavans, 1987). Given two ratios p/q and p'/q’ as “par-
ents,” the Farey mediant lying between the two parents
is defined as the ratio (p + p')(q + q’). A hierarchical
structure called the Farey tree can thus be generated begin-
ning with parents 0/1 and 1/1. Figure 3 shows all ratios from
the first five levels of the tree. The pattern of resonances
observed experimentally has been shown to correspond pre-
cisely to the Farey series in that wider resonance regions are
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Figure 2. Regime diagram generated by the sine circle map for
uncoupled frequency ratio, {2 = 0 to 1, and coupling strength, K =
0 to 3. (Resonances or Amold tongues {open areas] are labeled
with mode lock, or winding number, W = p/q {only Ws with g =
5 are shown]. Quasiperiodic regions are indicated by solid areas.
Note that above K = 1 [indicated by the horizontal line], the
resonances begin to overlap, and mode locking becomes unavoid-
able. The apparently random scatter above K = 1 indicates that
stable mode locks still exist apart from the large, orderly regions.)

composed of ratios drawn from lower order levels in the tree.
Thus, the Level 1 ratio of 1/2 is a wider resonance than the
Level 2 ratio of 2/3 (see Figure 3).

There also exists a strong relation between any two ad-
jacent ratios p/q and m/n, such that {psn — gsm| = 1. This
unimodularity or “mod 1" condition (Allen, 1983;
Coxeter, 1961; Hardy & Wright, 1938; Weyl, 1980) defines
the property of ratio adjacency (see the Appendix for the
geometrical significance of unimodularity). For example, 2/3
and 1/2 are unimodular ratios (| 2%2 — 3x11 = 1), whereas
2/3 and 4/5 are non-unimodular (12+5 — 4%3| = 2). Because
of their isomorphism to the Farey tree ratios, adjacent Arnold
tongues also conform to the unimodularity condition (Figure
2). Experiments with physical dynamical systems have
shown that bifurcations between resonances follow a route
satisfying mod 1 relations in the Farey tree rather than some
more arbitrary sequence of shifts (Maselko & Swinney,
1985). Hence, unimodular shifts may provide a means of
accessing states of dynamical optimality (Levitov, 1991).

By providing a systematic enumeration of all integer ratios
with the denominator not exceeding a given value, the Farey
series and tree have great generality in terms of the periodic
phenomena they may capture, including perception of con-
sonance in detuned musical intervals (Hall & Hess, 1984)
and, correspondingly, the diatonic musical scale (Révész,
1954). The circle map, as the deterministic generator of the
Farey series, has predominantly been used as a means of
describing one-way forcing or coupling in both physical and
biological systems such as hydrodynamic flows (Fein, Heut-
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maker, & Goilub, 1985; Stavans, 1987), chemical and acous-
tic oscillations (Maselko & Swinney, 1985; Yazaki, Sugioka.
Mizutani, & Mamada, 1990), heartbeat (Courtemanche,
Glass, Belair, Scagliotti, & Gordon, 1989; Guevara & Glass.
1982), neural dynamics (Allen, 1983; Bressloff & Stark,
1990), human cascade juggling (Beek, 1989), 1:1 synchro-
nization of limbs (Schmidt, Beek, Treffner, & Turvey, 1991
Beek & Turvey, 1992), and also polyrhythmic finger tapping
(Beek, Peper, & van Wieringen, 1992: deGuzman & Kelso,
1991; Kelso & deGuzman, 1988; Peper, Beek, & van Wierin-
gen, 1991). Circie map dynamics have also been shown to
provide an accurate characterization of systems with recip-
rocal forcing, such as two intrinsic oscillatory modes that
coexist in a hydrodynamic flow (Haucke & Ecke, 1987) or
rhythmic finger coordination (Kelso, deGuzman, & Holroyd.
1991). For this reason we consider the circle map an appro-
priate model for bimanual tasks that may not involve uni-
directional coupling.

Farey Tree Predictions for Coordinated Rhythmic
Movements

The resonance regions (Arnold tongues) in the regime dia-
gram depicted in Figure 2 exhibit markedly different widths
for different winding numbers, W, at some constant coupling
strength, K. It may be inferred that the width of a resonance
determines the probability that a given coupled oscillator
system remains at a particular W under random perturbation
such as rhythmical fluctuations or “noise.” This has been
explored using noisy circle maps (Glass, Graves, Petrillo, &
Mackey, 1980; Markosovd & Markos, 1989) and may char-
acterize the stability observed in biological, self-organized
systems (von Holst 1939/1973; Scholz, Kelso, & Schéner,
1987). It may be concluded that given a random perturbation,
wider resonances will afford more stable behavior than nar-
rower resonances. In the regime diagram of Figure 2, the
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Figure 3. The first five levels of the Farey tree depicting ratios,
p/q, from lower order mode locks (Level 0) to higher order mode
locks (Level 4). (Also indicated is the path of simple ratios down
the left-hand side, and the path of Fibonacci ratios [double lines].
Several ratios from which unimodular shifts may occur are also
indicated.)
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largest and consequently the most stable Arnold tongue is
also the biologically predominant 1:]1 absolute coordination
mode of terrestrial locomotion, which is accessible across the
complete range of () ratios by an appropriate selection of
coupling strength (Schmidt et al., 1991). In contrast, as one
moves down the Farey tree toward higher order levels, in-
creasingly less stable and, importantly, less biologically
prevalent mode locks are encountered.

The resonances act as attractors for nearby trajectories of
the dynamical system. Because of differences in width, how-
ever, resonances with ratios drawn from lower order levels
(e.g., Level 1 or 2) will act as stronger attractors than the
narrower resonances from higher order levels. Thus, it is to
be expected that in the presence of small phasing fluctuations
common to rhythmic movement tasks (Rosenblum & Turvey,
1988; Turvey, Schmidt, & Beek, 1993), the system will be
perturbed away from less stable ratios and toward neigh-
boring ratios (with unimodular relation) more often than to
some other ratio (with non-unimodular relation). If true, this
would support the hypothesis that a particular geometry of
resonances as partitioned by the Farey tree underwrites the
stability and shift phenomena of rhythmic movements.

We thus make a general prediction for polyrhythmic
movements that conform to these dynamics: Because the
final ratio produced (which we call “W-actual”) tends to be
different from the initial ratio (“W-expected”), the limbs
will not, in general, perform some arbitrary pattern but
rather will be attracted toward a neighboring, unimodular
ratio as implied by the geometry of mode locking (Figures
2 and 3; see also the Appendix). We call this the unimodu-
larity shift hypothesis.

Dynamical Systems Studies of Simple and
Polyrhythmic Movement Patterns

In a preliminary study applying the theory of nonlinearly
coupled oscillators to polyrhythmic movement, Kelso and
deGuzman (1988) required subjects to track a visual met-
ronome with the finger of one hand. The signal was then
switched off, and the corresponding finger of the other hand
was simultaneously driven by a mechanical oscillator at a
frequency different from that of the finger that continued the
initial rhythm. Six ratios were generated, two simple and four
polyrhythmic: 1:2, 1:3, 2:3, 2:5, 3:4, and 3:5. The standard
deviation of the frequency of the nonforced finger was meas-
ured and found to increase under different ratio conditions.
It was found that when the ratio was either 2:3 or 3:4, the
actual frequency produced moved in the direction of 1:1, and
a frequency ratio of 2:5 shifted toward 1:3. The simple ratios
were found to be less variable than the polyrhythms, as in
Deutsch’s (1983) study. The 1:1 ratio was interpreted as a
strong dynamical attractor for nearby ratios such that bi-
manual behavior asymptotically approached a 1:1 regime. In
addition, a learning effect was seen during a second block of
trials whereby 3:4 was performed more consistently (i.e., less
influenced by the 1:1 ratio). Sensitivity to the attractor layout
was thus influenced by practice and skill level. In a similar
vein, Peper et al. (1991) found that highly trained musicians
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modified a 2:5 or 3:5 tapping polyrhythm when a pacing
metronome was increased in frequency (cf. Kelso. Schiner,
Scholz, & Haken. 1987: Schmidt, Carello, & Turvey, 1990).
The change was shown as compatible with a bifurcation se-
quence predicted from the Farey series: 2:5 shifted to 1:2, and
3:5 shifted to either 1:2 or 2:3 (Figure 3). Significantly, these
sequences conformed to the unimodular structure of the
Farey tree.

Identifying a Model Task

To test the hypothesis that resonance constraints provide
the foundation for coordinated rhythmic movements, one
needs a task that makes performance as free as possible from
the confounds of nondynamical factors. Moreover, a task is
preferred within which simple rhythms and polyrhythms are
performable by novice subjects without any specialized
training in music or the rhythmic arts. There is one further
requirement. Previous investigations of polyrhythm percep-
tion and production have used an audible or visible
polyrhythmic pulse train to establish the desired performance
and have suggested that polyrhythm production may have a
significant perceptual component (Beauvillain, 1983; Beau-
villain & Fraisse, 1984; Handel, 1984; Handel & Lawson,
1983; Handel & Oshinsky, 1981; Jagacinski et al., 1988:
Klapp et al., 1985; Klapp, Porter-Graham, & Hoifjeld, 1991;
Pitt & Monahan, 1987; Summers, Bell, & Burns, 1989). The
pacing stimulus should be distinct from the desired
polyrhythmic movement pattern to avoid a possible con-
found between polyrhythm perception and polyrhythm pro-
duction, and it should also be readily detectable (Kolers &
Brewster, 1985). In the present article we explore two para-
digms that satisfy the preceding requirements of a model
task. Paradigm A is a unimanual task in which a frequency
of oscillation for a hand-held drumstick is established by an
auditory metronome, the metronome is turned off, and the
rhythm is continued by repetitively beating the drumstick in
midair while simultaneously hearing a second, different fre-
quency through earphones. In this situation the auditory sig-
nal may be considered as the “driver” oscillation, and the
continued drumstick tempo may be considered as the
“driven” oscillation. Paradigm B is a bimanual task in which
a hand-held pendulum is oscillated continuously at the sub-
ject’s preferred frequency, while a different frequency, de-
termined by an auditory metronome, is tracked simulta-
neously with either a pendulum or a drumstick in thé other
hand. In Paradigm B, it is arbitrary as to which hand is con-
sidered the driver and which the driven oscillator because the
assumptions of mutual forcing hold. The general dynamical
theory of mode locking leads to the unimodularity shift hy-
pothesis: When performing a polyrhythmlike movement, the
subject will tend to change unknowingly the frequency of the
drumstick in Paradigm A and the comfortably oscillating
pendulum in Paradigm B to a frequency that satisfies a uni-
modular ratio relative to the initial one. This means that the
frequency of drumstick or pendulum will change so as to
result in a shift in the Farey tree, specifically toward a
ratio—of drumstick and metronome frequency in Paradigm
A, and of pendulum and other-hand frequency in Paradigm
B-—that bears a unimodular relation to the initial ratio.
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The measure of simple rhythmic and polyrhythmic per-
formance in Paradigms A and B differs from more conven-
tional measures. The measure of satisfactory reproduction of
a polyrhythm in the finger-tapping paradigm is the inter-
leaving of the individual taps in the precise manner required
to yield an exact polyrhythmic ratio during each bimanual
cycle. Complying with this measure proves demanding, even
for trained musicians (Peper et al., 1991). The experiments
reported in this article involve a less restrictive measure but
one motivated by circle map theory. In correspondence with
the previous definition of the winding number (W) as the
average phase advance per unit time, or average frequency,
of the coupled system, a produced rhythmic pattern is evalu-
ated as the average frequency ratio performed over the full
duration of a trial. Importantly, this measure also conforms
with the observation that two coupled biological rhythms
exhibit phase entrainment rather than phase locking, mean-
ing that the phase angle of one covers a full cycle in the same
amount of time as the phase angle of the other without nec-
essarily maintaining a fixed phase difference during the cycle
(deGuzman & Kelso, 1991; Kelso et al., 1991; Schmidt,
Shaw, & Turvey 1993; Sternad, Turvey, & Schmidt, 1992,
Turvey et al., 1993). Indeed, the best term for biological
rhythmic coordinations is phase artraction (deGuzman &
Kelso, 1991; Kelso et al., 1991; Kelso, DelColle, & Schoner,
1990). In the original work of von Holst (1939/1973) on the
medulla-transected Labrus, contrasting interfin patterns of
absolute coordination (1:1 frequency locking and mainte-
nance of a fixed phase relation) and relative coordination
(unlocked frequencies but a tendency to certain phase rela-
tions) were observed in any given time series. Kelso and
colleagues (deGuzman & Kelso, 1991; Kelso, 1991; Kelso
et al., 1991) have furnished a nonlinear dynamical analysis
that reveals a connection between the relative phase observed
by von Holst and the phase intermittency associated with
tangent bifurcations (Manneville, 1990).! With respect to
von Holst’s medulla-transected Labrus, a pair of fins of un-
equal natural frequencies in relative coordination would
hover in the vicinity of 1:1 frequency and phase locking for
some time, wander fleetingly through other phase relations,
once again return and stay in the vicinity of 1:1, and then
wander off again. This cycling of phase accords with the
intermittency associated with a tangent bifurcation.?

Understanding that the dynamics of biological movement
systems are phase attractive has significance for the present
research and related studies. It suggests how the hierarchy of
Farey ratios may provide one and the same attractive stability
structure for systems that exhibit rigid phase locking and for
those, such as biological movement systems, that exhibit
flexible yet stable phase patterns by behaving close to phase-
locked regions without necessarily settling into them (Beek,
1989; Kelso et al., 1991; Turvey et al., 1993).

Returning to the model task, the central idea behind it is
that of “preparing” a subject at the outset of a trial in a given
rhythmic pattern without the subject knowing the pattern in
advance and without the subject having any explicit respon-
sibility for the preservation of the pattern. The idea is to
impose, as effortlessly as possible, competing frequencies on
the perception—action system. To achieve this requires that a
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subject’s attention is not directed explicitly at the perfor-
mance of, for example. a 3:5 pattern. Rather. it is directed at
the 3:5 pattern only implicitly, through the instructed goal of
keeping one of the hands oscillating at a prescribéd fre-
quency. Maintaining the prescribed hand frequency is the
focus of the subject’s explicit attention. For this reason the
movement pattern is better described as polyrhythmlike
rather than strictly polyrhythmic. Guiding the application of
Paradigms A and B is the assumption that, in whatever way
competing frequencies are defined on the perception and ac-
tion subsystems, the persistence of the ratio they form will
be governed systematically by resonance constraints. The
involved neural and muscular mechanisms must interact, and
their interactions must comply with general dynamical prin-
ciples. Accordingly, the proposed measure of frequency ratio
averaged over a trial should provide, in its departures from
the original “prepared” ratio of competing frequencies, a ba-
sis for evaluating the unimodular shift hypothesis.

Experiment |

Listening to a rhythmic pattern and, concurrently, moving
rhythmically are regular human achievements. It is apparent
that there exists a coupling between the temporal pattern
listened to and the temporal pattern of bodily motions pro-
duced. Equally pronounced is the appreciation that e xecuting
a single-handed tempo different from that listened to can be
a challenging task (Klapp et al., 1985). However. trained
musicians rarely maintain a fixed tempo (Shaffer. 1981). It
has been argued that the dynamic event structure of the rhyth-
mic context determines the selection of particular temporal
structures over others (Jones, 1990; Jones & Boltz, 1989:
Jones, Kidd, & Wetzel, 1981). In the first experiment, Para-
digm A is applied to assess whether the unimodular geometry
is selective of particular ear—hand coordinations. Essentially.
the subject in the course of producing the hand frequency
frana hears a metronome frequency foeromanes where initially

! Weakly coupled oscillators whose natural frequencies compete
will be attracted toward integer frequency locks even though they
cannot perfectly attain them. Graphically, the time derivative of
phase as a function of phase may exhibit no zero crossings and
hence no stationary fixed points (stable or unstable). However, the
curve may tangentially approach the phase axis such that there
exist only trajectories that gradually approach and veer away from
the very zero crossings that would normally be attained with
greater coupling or oscillators of more closely matched natural
frequencies (Kelso et al., 1990, 1991). Such a point still provides
phase attraction by means of the “ghost™ of a fixed point (Man-
neville, 1990) even though the fixed point proper has disappeared
(the curve has lifted off the axis). Under these conditions, periods
of coherent, laminar behavior with steady phase will occasionally
be interrupted by bursts of incoherent phase, phase wandering. and
(possibly) chaotic behavior.

2 Although intermittency, with quasiperiodicity. are two of the
bifurcation routes to chaos exhibited by dynamical systems, only if
some control parameter (such as K in the circle map) is scaled
continuously may a bifurcation to chaos be obtained.
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Frand 7 Foneronome Such that the produced and heard frequen-
cies are in competition. The question posed is, Will an in-
tended manual rhythm f,,,,., be deflected (spontaneously) by
an auditory rhythm f,,,,onome int the direction of forming a
new, shifted ratio fung'finerronome that is in unimodular rela-
tion to the initial ratio? That is, will the final ratio, W-actual,
be in a unimodular relation to the initially produced ratio,
W-expected?

To perform this analysis it was necessary to decide whether
a value of W-actual was sufficiently close to a rational num-
ber to be considered equivalent to the latter. Previous studies
have determined a value for the performed ratio, W, through
either subjective coding of W-actuals (Peper et al., 1991) or
designation of a fixed parsing window, for example, = 0.05
(Paterson, Wood, Marshall, Morton, & Henstridge, 1986). In
the present method, W-actuals were computationally parsed
using very conservative tolerance windows on either side of
a given rational W, The ranges were generated using the sine
circle map (see Equation 2) to specify the widths of all mode-
locked Arnold tongues from the first six levels of the Farey
tree (Levels 0-5). In addition, the regions on either side of
a ratio were required not to overlap another ratio from the
same level or any other of the top six levels of the tree. The
value of K, the coupling strength in the circle map, was set
to 1 to generate the tolerance windows. Because the relative
widths of the Arnold tongues are maintained over the range
K = 1, K = 1 offered appropriate widths of the tolerance
windows prior to the onset of the overlap of resonances and
chaos. On either side of a W-ratio, the windows were Level
0 (i.e., 1:1), 0.0714; Level 1 (i.e., 1:2), 0.0396; Level 2,
0.0172; Level 3, 0.0076; Level 4, 0.0036; and Level 5,
0.0015. Thus, a W-actual of 0.535 would be parsed as W =
1:2 because the Level 1 window for 1:2 is given by 0.5 =
0.0396, which encompasses 0.535.

Because the tolerance windows decrease in width as Farey
level is increased, a measure of performance is required that
is uninfluenced by the differential widths. To this end, the
analysis focused on the issue of whether, in general, more
mod 1 than non-mod 1 shifts occurred for a given W-expected
(the unimodularity shift hypothesis). That is, were the shifts
patterned according to the structure of the Farey tree (mod
1), or were the shifts arbitrary with respect to final ratio
settled on (non-mod 1)? Because the dependent measures of
proportions of mod 1 and non-mod 1 shifts involve shifts to
various ratios from various Farey levels, they are not biased
by differential window widths. With the exception of Levels
O and 1 (1:1 and 1:2), each level of the Farey tree contains
either mod 1 or non-mod 1 ratios relative to some initial
W-expected from another level. However, Levels 0 and 1 do
not possess this property because their single, component
ratio rules out a mod | or non-mod 1 counterpart. Conse-
quently, in deriving the proportions of mod 1 and non-mod
1 shifts, any shifts toward 1:1 or 1:2 must be excluded from
the analyses because Level 0 or Level 1 can provide only
either a mod ! or a non-mod 1 ratio for some initial
W-expected.

Because the unimodularity hypothesis states that more
mod 1 than non-mod 1 shifts will occur if Farey constraints
apply, it is necessary to compare the experimental shift data
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to what would theoretically be expected on the basis of
chance behavior. However, the Farey tree generates an in-
finite number of ratios, and so estimation of the expected
probabilities of mod 1 and non-mod 1 shifts was limited to
only those ratios from the first six Farey levels (Levels 0-5).
Table 1 presents, for each W-expected of the present experi-
ments, the number of mod | and non-mod I resonances and
the percentage of the K = 1 line covered by them as deter-
mined by summing the sizes of their respective tolerance
windows (consider again the Arnold tongues depicted in Fig-
ure 2). Table 1 reveals that there are many more non-mod |
ratios than mod 1 ratios (consider, once again, Figure 3) and
that non-mod 1 ratios cover much more of the K = ! line than
mod 1 ratios. Consequently, W-actual is more likely to be
parsed as a non-mod 1 ratio than as a mod 1 ratio. For ex-
ample, if a shift occurs from W-expected = 4:7, the chance
of the W-actual being parsed in the analysis as a non-mod |
ratio rather than as a mod 1 ratio is approximately 10:1
(20.8% vs. 2.1%). The hypothesis under investigation
counters this greater chance expectancy of non-mod 1 shifts:
It expects that shifts should be predominantly of the mod 1
kind because such shifts are constrained by the unimodular
structure of the Farey tree.

Method

Subjects. A total of 25 right-handed people (9 men and 16
women) participated in the experiment. They were graduate and
undergraduate students at the University of Connecticut.

Materials. A chair was used that had an attached right-hand
writing surface on which the subject could rest his or her arm
comfortably. An electronic auditory metronome that emitted
short-duration blips was positioned 150 cm behind the subject’s
seat. A tape recorder and earphones were used to present previ-
ously recorded metronome frequencies. The intensity of the bin-
aural presentation was comparable for all subjects, though tai-
lored to the comfort of the individual subject. Each subject held a
wooden drumstick, 21.5 cm in length, | cm in diameter, and
weighing 10 g, which was to be swung rhythmically. Kinematic

Table 1

Number of Mod 1 and Non-Mod | Resonances
From a Given W-Expected and Percentage

of the K = I Line Covered by Them

Number Percentage
of ratios at K = 1
Level W-expected Mod ! Non-Mod I Mod 1 Non-Mod 1

1 1:2 8 22 12.0 11.44
2 1:3 6 23 5.04 15.18
2 2:3 6 23 5.04 15.18
3 14 5 24 5.5 16.32
3 2:5 5 24 5.5 16.32
3 35 5 24 5.5 16.32
3 3:4 5 24 5.5 16.32
4 1:5 3 26 2.1 208
4 4:7 3 26 2.1 20.8
4 5:8 4 25 5.52 17.0
4 4:5 3 26 2.1 20.8
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data were collected using a three-dimensional sonic digitizer
(SAC, Westport, CT) and kinematic analysis software (Engineer-
ing Solutions, Columbus, OH). For collecting motion data on ob-
jects oscillated by hand, high-frequency sound emitters (30 mm
long and 5 mm wide) were attached at the end of the objects. The
sounds they emitted were detected by four microphones. In the
present experiment the microphones were positioned at the cor-
ners of a square grid (77 cm by 77 cm) arranged vertically and
placed at a distance of 40 cm in front of the tip of the drumstick
when held in the subject’s hand. The digitizer calculated the dis-
tances of the emitter from each microphone, using the three least
noisy records to pinpoint the position of the emitter in three-
dimensional space at the time of the emission. The signal was
sampled at 90 Hz, passed through an analog/digital converter, and
stored on an 80286-based PC hard disk for further software
analyses.

Procedure. At the start of each trial, the subject was presented
an initial metronome frequency to track with oscillatory motions
of the drumstick in the right hand in a plane parallel to the sub-
ject’s sagittal plane. After 15 s of performing the prescribed fre-
quency, this initial, tracking frequency was terminated (the met-
ronome was switched off), and the subject continued the midair
drumstick motion at the initial frequency while a different fre-
quency was presented through the earphones. With respect to the
assigned task (namely, rhythmically moving the drumstick at the
initially given frequency), this new audible frequency was irrel-
evant and could be ignored. The start of the trial proper began
10 s after the introduction of the new irrelevant frequency over
the earphones. In light of the assumptions of phase entrainment,
the phase at which the new frequency was introduced was not
controlled. (Inspection of the time series of individual trials indi-
cated that performance equilibrated to a particular ratio within the
first 10 s under the combined rhythmic context; this was the case
for Experiments 1, 2, and 3.) A trial lasted 70 s: The irrelevant
frequency was played for 70 s, during which the subject at-
tempted to continue the drumstick rhythm at the initial frequency.
At the termination of each trial the subject could rest briefly for
30 s while the data were being stored on disk.

Design.  Atotal of six frequency ratios were tested: 1:2, 1:3,2:3,
2:5, 3:5, and 3:4. A frequency ratio was defined by the initial drum-
stick frequency divided by the subsequent metronome frequency,
that is, £, umseick (iNitial) = £ rronome- There were two initial drum-
stick frequencies of 0.67 Hz and 1 Hz. If the initial drumstick fre-
quency was | Hz, the subsequent metronome frequency had to be
set at 3 Hz to produce a ratio of 1:3; to produce a ratio of 3:5, the
subsequent metronome frequency had to be set at 1.66 Hz. The six
ratios defined the W-expected values. Each subject received each
ratio twice at each initial drumstick frequency for a total of 4 trials.
Ratios and initial frequencies were presented in random order for
a total of 24 trials. A complete session lasted approximately 60 min.

The time series of each trial was inspected to confirm that the

initial drumstick frequency at the outset of a trial was at the pre-
scribed pace of either 0.67 Hz or 1 Hz. All trials satisfied this
requirement. For each trial of each subject, a value for W-actual—
the ratio in the mean that the subject actually achieved—was ob-
tained as a quantity characterizing the overall behavior during a
trial. This was calculated as the ratio of the mean drumstick fre-
quency to the metronome frequency calculated over the duration of
a trial. For example, given the initial drumstick frequency of
Sfarumsrick (initial) = 0.67 Hz, an average drumstick frequency over
the trial of £, msricx (average) = 0.75 Hz, and an auditory metro-
nomic frequency during the trial of f,,...ronome = 1.12 Hz, then for
that trial, W-expected = 3:5 and W-actual = 2:3.

Results and Discussion

To arrive at the actual numbers to be used in the mod 1
versus non-mod 1 contrast, we derived several measures of
W-actual performance for each W-expected for each subject
following the strictures laid down in the introduction to the
experiment. The identity of these measures and their aver-
ages across subjects and metronome conditions are presented
in Table 2. For example, of all trials prepared as a 2:3
W-expected, only 57% of all W-actuals were accepted as
some resonance from the top six levels of the Farey tree.
Synonymously, 43% of all W-actuals were outside the tol-
erance window of any ratio and were, therefore, unparseable.
With respect to those parsed as some ratio, 17% of all trials
remained in the prepared W-expected; 2% shifted to 1:1; 15%
shifted to 1:2; and 23% of all trials shifted to some other ratio.
With respect to the 23% of all trials for which a shift occurred
from 2:3 to aratio other than 1:1 or 1:2, 18% of all trials were
mod 1 shifts, and 5% were non-mod 1 shifts. It is this latter
comparison that constitutes the test of the unimodularity shift
hypothesis.

Using the numbers computed in the manner of Table 2 for
each subject as a function of metronome condition, we con-
ducted a three-way analysis of variance (ANOVA) on inde-
pendent variables of shift type (mod 1 vs. non-mod 1), initial
drumstick frequency (0.67 Hz vs. 1 Hz). and W-expected
(1:2, 1:3, 2:3, 2:5, 3:5, or 3:4). The dependent variable was
the mean proportion of trials per subject exhibiting a shift of
the specified type. There was a significant main effect of shift
type (mod | = 18.5% vs. non-mod | = 5.5%), F(1,24) =
55.82, p < .0001. Initial drumstick frequency did not sig-
nificantly affect shift behavior, F(1, 24) = 0.79, p > .05, nor
was there any main effect of W-expected, F(5, 120) = 1.68,
p > .05. It may be concluded that more mod 1 shifts than
non-mod 1 shifts occurred, contrary to an expectation based
on the greater theoretical availability of non-mod 1 ratios and
in agreement with the hypothesis that an intended manual
rthythm f,.,,.; will be deflected (spontaneously) by an audi-
tory rhythm f,,..onome 10 the direction of forming a ratio
faandfmemonome governed by the unimodularity structure of
the Farey tree.

Table 2

Measures of Performance of W-Actual as a Function
of W-Expected in Terms of Percentage of All Trials
Averaged Across Subjects and Initial Drumstick
Frequency in Experiment |

W-expected

Measure 12 1.3 23 25 35 34
At any resonance 65.0 47.0 57.0 51.0 640 570
Remaining at W-expected 48.0 22.0 17.0 120 30 70
Shifts to 1:1 1.0 00 20 00 30 1.0
Shifts to 1:2 — 20 150 120 360 60
To another resonance 16.0 230 230 270 220 330
Mod 1 shifts 13.0 20.0 180 210 150 240
Non-Mod 1 shifts 30 30 50 60 70 90
Unparseable 350 53.0 43.0 490 36.0 430
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Experiment 2

The focus of the second experiment was bimanual pro-
duction of polyrhythmlike movements. Analogous to the task
of Experiment 1, the present task did not require the subject
to attend explicitly to the relation between the two rhythms
composing the rhythmic pattern. The procedure was a ver-
sion of Paradigm B and exploited the facility of human sub-
jects to oscillate a pendulum at a stable frequency determined
primarily by the length of the pendulum and referred to as
the subject’s comfort-mode frequency (Kugler & Turvey,
1987). While simultaneously producing an autonomous
comfort-mode frequency with the pendulum hand, a subject
was free to focus attention on the other hand (which was
being used to track rhythmically a metronome). The task
involved a minimal degree of attention toward the pendulum
hand, just sufficient to maintain its continuous, rhythmical
motion.

Previous investigations involving a 1:2 task (e.g., one hand
tapping twice as fast as the other) have yielded results sug-
gesting a central role for attention. Laterality effects with
respect to handedness were amplified when attention was not
focused on the dominant limb (Ibbotson & Morton, 1981;
Peters, 1977, 1980, 1981, 1985a, 1985b, 1987). Laterality
effects, however, were not obtained in a polyrhythmic (2:3)
tapping task, provided that attention was focused on the
faster hand, regardless of its relative dominance (Peters &
Schwartz, 1989). In Experiment 2, the subject directed at-
tention toward the faster hand (which tracked the metro-
nome), while the dominant (right) hand remained free to
execute the relatively autonomous task of comfort-mode os-
cillation. Depending on the frequency of the metronome with
respect to the comfort-mode frequency of the pendulum,
various W-expected ratios could be generated. The resultant
performance due to bimanual coupling was investigated to
determine whether subjects would maintain an initial bi-
manual ratio (W-expected) or would modify the frequency of
the comfort-pendulum oscillation to settle at a different ratio
(W-actual) in unimodular relation to W-expected.

Method

Subjects. A total of 16 right-handed subjects (10 men and 6
women) participated. The subjects were graduate and undergradu-
ate students at the University of Connecticut; 7 were recruited from
the university’s music department (of whom 5 were percussion ma-
jors and 2 were guitar majors).

Materials. The same sonic digitizer and allied software used in
Experiment | were used in the second experiment. A specially de-
signed chair with leg rests permitted raising the legs toward the
horizontal to avoid interference with the sonic data collection. Arm
rests permitted comfortable support of both left and right wrists
during oscillatory movements. The microphones of the three-
dimensional sonic digitizer were placed horizontally at a vertical
distance of 60 cm below the subject’s chair. There were two pen-
dulums (for the right hand) of 53 cm and 33 cm, both cut from
wooden dowels 2.2 cm in diameter. Each included a molded plastic
grip at one end. The two pendulums weighed 170 g and 131 g,
respectively, with moments of inertia for rotation about an axis
parallel to the ground plane and through a point in the wrist of
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52,309 g cm? and 165,348 g cm?. respectively. The dimensions of
the wooden drumstick (for the left hand) and the position of the
metronome behind the subject were identical to those used in Ex-
periment 1.

Procedure and design.  After settling into the data collection
chair, the subject was shown how to rest each wrist at the end of
the arm rests of the chair. The subject was then given the longer
pendulum in the right hand and asked to oscillate the pendulum
parallel to the saggital plane at his or her most comfortable
rhythm, so as to become familiar with the concept of a comfort-
mode frequency. The subject was then handed the small drum-
stick in the left hand and shown how to make midair oscillatory
movements parallel to the plane of motion of the pendulum.
When the subject had moved both hands independently, the ex-
perimenter asked the subject to begin oscillating the pendulum in
the right hand at a comfort-mode frequency and to attend to the
left hand and to begin tracking a metronome of a different fre-
quency while maintaining the movement of the pendulum. The
subject was presented several different right-hand/left-hand fre-
quency ratios with both long and short right-hand pendulums for
approximately 10 min until he or she had demonstrated a capac-
ity for such bimanual motion. In addition, it was strongly empha-
sized that they should track the metronome with the left-hand
drumstick as closely as possible, even if the right-hand pendulum
changed its initial comfort-mode frequency. Any subject who
could not maintain the bimanual motion while tracking the met-
ronome was asked to leave the experiment.

Research has shown that the elected comfortable frequency at
which a person swings a hand-held pendulum approximates closely
the gravitational eigenfrequency of the pendulum as given by f =
(Yam) (g/L)"*, where L is the equivalent simple pendulum length
(see Kugler & Turvey, 1987; Rosenblum & Turvey, 1988). Ac-
cordingly, given two hand-held pendulums of different lengths, as
in the present experiment, the two comfort frequencies will be re-
liably different. For each subject, the comfort-mode frequency for
each of the two pendulums was determined as the mean of three
trials, each of 30 s duration. During each trial, the average frequency
was calculated from the sum of all cycle frequencies; each cycle
frequency was measured as the inverse of the duration from one
peak extension to the next. The comfort-mode. pendulum frequency
was then used to determine a frequency for the metronome-tracking
hand whereby the left hand always took the higher frequency of a
ratio in comparison with the comfort-mode frequency.

A total of eight ratios (W-expected values) were tested,
namely, 1:2, 2:3, 2:5, 3:5, 3:4, 4.7, 5:8, and 4:5. For each trial,
the subject began by swinging the pendulum comfortably for 15
s. At this point the metronome was switched on, and the subject
began oscillating the drumstick. Ten seconds later, the trial proper
and data collection began; subjects proceeded to track the metro-
nome with the oscillations of the drumstick while simultaneously
swinging the pendulum for a trial duration of 30 s. If the drum-
stick oscillations did not match the metronome beat, then the trial
was discarded and repeated again. Three subjects (not included in
the 16 tested) could not perform the bimanual task and were
asked to leave the experiment. Subjects could rest at the end of a
trial for 30 s while data were stored on disk. Each W-expected
was tested twice with each of two pendulum lengths for a total of
four trials. W-expecteds were randomized and presented in alter-
nating blocks of eight trials, beginning with the long pendulum.
All trials within a block involved the same length of pendulum.
At the start of each block the comfort mode for the new pendu-
lum was obtained as the average of three test trials. A complete
session lasted approximately 60 min.



RESONANCE CONSTRAINTS ON RHYTHMIC MOVEMENT

Results and Discussion

As in Experiment 1, a value for W-actual characterized the
overall behavior during a trial and was calculated as the ratio
of the average right-hand (comfort-mode pendulum) fre-
quency f,;.;, (average) to the left hand (metronome tracking)
frequency f,.. Because of the conditions of the experiment,
W-actual was always calculated for trials in which f,,4 did not
deviate in the mean (and deviated minimally on a cycle-to-
cycle basis) from the metronome frequency. Any deviations
of W-actual from W-expected, therefore, were due to f,;gp,
(average) # f,.4 (initial), meaning that the pendulum os-
cillations had shifted to a frequency other than the comfort-
mode frequency.

Assignments to W-actual ratios were through the circle
map conventions identified in the introduction of Experi-
ment I. Table 3 presents the proportions of mod 1 and
non-mod 1 shifts (averaged over subjects, skill, and pen-
dulum conditions) with their derivations for each
W-expected. A four-way ANOVA was performed with
between-subjects variable of skill (nonmusicians vs. musi-
cians) and within-subjects variables of pendulum length
(45 cm vs. 26 cm), shift type (mod 1 vs. non-mod 1) and
W-expected (1:2, 2:3, 2:5, 3:5, 3:4, 4.7, 5:8, and 4:5). The
dependent measure, as in Experiment 1, was the mean pro-
portion of trials per subject exhibiting either a mod 1 or a
non-mod 1 shift determined, in the manner of Table 3, for
each of the experimental conditions. The main effect of
shift type was significant (mod 1 = 13.52% vs. non-mod 1
= 7.61%), F(1, 14) = 11.31, p < .01, but the main effects
of W-expected, pendulum, and skill were not, F(7, 98) =
0.65, p > .05, F(1, 14) = 0.04, p > .05, and F(1, 14) =
0.02, p > .05, respectively. There was also a significant in-
teraction between shift type and ratio, F(7, 98) = 2.78, p
< .05, due to an increase in non-mod | shifts over mod 1
shifts for two of the ratios tested, namely, 4 : 7 and 4 : 5.
Despite the contrary patterning for these latter two ratios,
the general conclusion to be drawn from Experiment 2 is
consistent with that from Experiment 1: When a resonance
shift occurred, it tended to be toward a neighboring ratio
predictable from the unimodular structure of the Farey
tree.

Table 3

1229
Experiment 3

When two rhythmic movement patterns are drawn from
the same level of the Farey tree, are they necessarily alike in
their dynamics? Inspection of Figure 2 in conjunction with
Figure 3 reveals that for any given coupling strength K <1,
the widths of the Arnold tongues for same-level ratios are
identical and, in fact, symmetrical. The empirical relation
between width of Arnold tongue and oscillation stability im-
plies that rhythmic movement patterns from a common Farey
level will have similar dynamics in terms of fluctuations and
tendency to shift to another ratio. However, other consider-
ations point to differences among same-level ratios and lead,
therefore, to expectations of asymmetrical dynamics.

A Fibonacci ratio is one in which addition of the ratio’s
numerator and denominator yields the denominator of the
following ratio in a series of ratios known as the Fibonacci
series; the ratio’s denominator yields the numerator of the
next ratio in the Fibonacci series. Beginning with 1:1 at Level
0, the Fibonacci series to Level 4 is 1:2, 2:3, 3:5, and 5:8. The
Fibonacci series provides increasing rational approximations
to the irrational number known as the *“golden mean”
[(V/5-1)/2 =0.618.. ], where an irrational number has
nonrepeating digits following the decimal point (e.g., w). The
most explicit representation of both rational and irrational
numbers is through the method of “continued fractions”
(Hardy & Wright, 1938; Schroeder, 1984, 1991). As can be
seen in Figure 4, the simple ratios have the shortest continued
fraction representation, whereas the Fibonacci ratios have the
longest continued fractions with entries consisting of only
ones. This implies that a continued fraction for a Fibonacci
ratio takes longer to converge than for a non-Fibonacci from
the same Farey level. The continued fraction representation
of the golden mean irrational consists of a nonterminating
series of ones and justifies its label as the most irrational of
irrational numbers (Schroeder, 1991). Experiments directed
at quasiperiodicity have exploited this property of Fibonacci
ratios to avoid mode locking. By tuning the winding number,
W, of a dynamical system to be close to a higher order Fi-
bonacci ratio, quasiperiodic rather than mode-locked dynam-
ics have been observed (Fein et al., 1985; Stavans, 1987). In
other words, it is easier to avoid mode locking if the system

Measures of Performance of W-Actual as a Function of W-Expected in Terms
of Percentage of All Trials Averaged Across Subjects and Pendulum Length

in Experiment 2

W-expected

Measure 1:2 2:3 2:5 3:5 34 4:7 5:8 4:5
At any resonance 72.22 6448 4484 63.88 4582 5575 63.68 43.64
Remaining at W-expected 53.57 14.09 873 456 3.17 496 595 0.0
Shifts to 1:1 0.0 1.78 0.0 0.0 8.13 1.39 1.78 15.87
Shifts to 1:2 — 28.17 11.9 38.09 1825 30.75 24.60 9.52
To another resonance 18.65 2044 2421 2123 1627 1865 31.35 18.25
Mod 1 shifts 1091 1448 2143 18.05 13.09 595 2004 4.17
Non-mod 1 shifts 774 596 278 318 318 1270 11.31 14.08
Unparseable 27.78 3552 55.16 36.12 54.18 4425 3632 56.36
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Figure 4. Continued fraction representation of ratios from Lev-
els 1 to 4 of the Farey tree. (Note the path of ratios with fastest
versus slowest convergence properties: simple ratios [left-hand
heavy line] vs. Fibonacci ratios [double heavy line}].)

is tuned close to an irrational number, and it is easiest if this
number is a Fibonacci with maximal convergence time. In
Figure 2, quasiperiodic motion is obtained by covarying
W-expected and K to determine a point in the black, quasi-
periodic region that avoids mode locking. However, as men-
tioned in the introduction, as K increases, the size of the
mode-locked regions correspondingly grows such that, ex-
perimentally, it actually becomes very difficult to avoid mode
locking. Therefore, to observe a shift from a non-mode-
locked (quasiperiodic) ratio to a mode-locked ratio, the best
choice of W-expected would be a Fibonacci ratio. Further-
more, because the Farey geometry is assumed to constrain
shift dynamics, it is expected that more mod 1 shifts will
occur than non-mod 1 shifts. And because the numerical sub-
structure of the Fibonacci ratios is maximally complex, it is
expected that more mod 1 shifts will occur for Fibonacci than
for non-Fibonacci ratios. We refer to this as the continued
fraction substructure hypothesis.

In the third experiment, we compare the “most simple” and
the “most complex” ratios at a given Farey level, as identified
through the number-theoretic construction of Figure 4. More
specifically, we use a version of Paradigm B to compare the
single simple rhythmic pattern from a given Farey level with
the single Fibonacci polyrhythmic pattern from that same
level. If the complexity of a ratio’s substructure is a deter-
minant of its dynamics, these same-level W-expecteds should
not be associated with the same pattern of persistence and
change, that is, the pattern of mod 1 and non-mod 1 shifts
should be different for ratios from the same level. It is to be
expected that given the long convergence rates of the asso-
ciated continued fraction substructure, a Fibonacci ratio will
engender more mod 1 shifts than a simple ratio when both
are drawn from the same level in the Farey tree. This number-
theoretic constraint may provide a basis for the observed
asymmetry in performance dynamics of the underlying sym-
metrical Arnold tongues.
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Method

Subjects. A total of 13 right-handed undergraduate subjects (8
men and 5 women) from the University of Connecticut participated.
Five subjects had at least 5 years experience in playing a musical
instrument, either through coursework or recreationally.

Materials. The same data collection chair as in Experiment 2
was used. There were two left-hand pendulums and one right-hand
pendulum. Each pendulum consisted of an aluminum rod; a mass
was attached at the lower end of the left pendulums but not the right
pendulum. Both left-hand pendulums were 58 ¢m long and 1.3 ¢m
in diameter, with shafts weighing 249 g. Each had either a heavy
(500 g) or light (100 g) mass attached at its end. The corresponding
moments of inertia of the two left-hand pendulums (for rotation
about a point in the wrist in a plane perpendicular to the ground
plane) were 621,274 g cm?® and 1,813,203 g cm?, respectively. The
right-hand pendulum was 36 cm long and 1.3 cm in diameter, with
mass of 167 g and moment of inertia of 64,128 g cm?.

Procedure and design. The subject was required to coordinate
a pendulum at a comfort-mode frequency in the left hand while
tracking a metronome with another pendulum in the right hand. In
Experiment 2, the right-hand wrist-pendulum provided the comfort-
mode frequency, while the left hand tracked the metronome at a
higher frequency than the right. In Experiment 3, because of the
nature of the simple ratios used, the tracking hand was required to
oscillate at considerably higher frequencies than in Experiment 2.
Pilot studies indicated that a subject could only maintain such high
frequencies if the dominant right hand tracked the faster metronome
frequency while the left hand oscillated at the lower, comfort-mode
frequency.

To familiarize the subject with the task, he or she was given the
long pendulum in the left hand and asked to oscillate it freely in a
plane parallel to the body’s saggital plane (in order to become fa-
miliar with his or her comfort-mode frequency). The subject was
then handed the shorter pendulum in the right hand and asked to
track a metronome while simultaneously maintaining rhythmic
movement of the left pendulum. Each subject demonstrated com-
petence with several different right-hand/left-hand frequency ratios
with both the heavy and light masses attached to the left (comfort
mode) pendulum. It was emphasized that the subject should track
the metronome with the right-hand pendulum as closely as possible,
even if the left-hand pendulum altered its initial frequency. Any
subject who could not demonstrate sufficient competence of the
bimanual task was eliminated from further experimentation. This
occurred with only 2 subjects.

A total of six W-expected ratios (three simple and three Fi-
bonacci), drawn from three Farey levels, were tested: 1:3 versus 2:3,
1:4 versus 3:5, and I:5 versus 5:8. During a trial, the subject swung
the left pendulum at a comfort-mode frequency for 15 s. The met-
ronome was then switched on, the subject began oscillating the
right-hand pendulum, and after a further 10 s, data collection and
the trial proper began. During the 30-s trial, the subject simulita-
neously tracked the metronome with right-hand pendulum oscil-
lations while oscillating the left-hand pendulum. If the right pen-
dulum oscillations did not match the metronome beat, the trial was
terminated and repeated. At the end of a trial the subject rested for
30 s while data were stored on disk. The ratios were randomized and
presented in two blocks of 6 trials for a total of 12 trials. At the start
of each block the comfort mode for the left-hand pendulum was
obtained as the average of two trials, each lasting 30 s. The first 6
subjects tested received the 500-g left-pendulum condition; the re-
maining 7 subjects received the 100-g left-pendulum condition. A
complete session lasted approximately 30 min.
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Results and Discussion

W-actual for each trial was calculated as the ratio of the
average left-hand comfort-mode pendulum frequency to the
average right-hand metronome-tracking pendulum fre-
quency. The proportion of mod 1 and non-mod 1 shifts, with
the other performance measures for each W-expected (all
averaged over subjects and pendulums), are presented in
Table 4. To test both the unimodularity shift hypothesis and
the continued fraction substructure hypothesis, we conducted
a five-way ANOVA with between-groups variables of pen-
dulum and skill, and within-groups variables of shift type
(mod | vs. non-mod 1) and ratio type (simple vs. Fibonacci).
To determine whether there was an influence from Farey
level of W-expected, we included an independent variable of
Farey level of W-expected (Levels 2, 3, and 4), given that two
W-expecteds were drawn from each of the three Farey levels.
The dependent measure was the mean proportion of trials that
made a shift of the specified type. There was a significant
main effect of shift type (mod 1 = 12.15% vs. non-mod 1
= 2.67%), F(1,9) = 7.59, p < .05, and of ratio type (simple
= 2.5% vs. Fibonacci = 12.33%), F(1,9) = 7.12, p < .05.
Thus, if shifts occurred, they tended to be from Fibonacci
ratios toward neighboring, unimodular ratios rather than
from simple ratios toward nonneighboring ratios. Neither
pendulum nor Farey level were significant, F(1, 9) = 0.15,
p > .05, and F(2, 18) = 0.28, p > .05, respectively. Thus,
an equivalent proportion of mod 1 and non-mod 1 shifts
occurred for W-expecteds from all three Farey levels tested.

The main effect of skill was also significant (nonmusicians
= 12.22% vs. musicians = 2.60%), F(1,9) = 6.13, p < .05.
There was also a significant interaction between skill and
shift type (mod I: nonmusicians = 22.22% vs. musicians =
2.08%; non-mod 1: nonmusicians = 2.22% vs. musicians =
3.12%), F(1,9) = 9.34, p < .05. The simple effects analysis
indicated that the two skill groups differed in the proportion
of mod 1 shifts that occurred; there were more mod 1 shifts
for the nonmusicians than for the musicians (p < .01). Re-
garding the non-mod 1 shifts, equal proportions occurred for
both skill groups. In addition, the adjacency structure of reso-
nances did not seem to determine a musician’s preference for
mod 1 shifts over others, and a shift to an adjacent ratio was
as probable as a shift to a more distant one. In contrast to the

Table 4

musicians, more mod | than non-mod 1 shifts tended to occur
for the nonmusicians (p = .052).

The skill distinction may be tied to the effects of inertia
exerted through the dynamical dispositions of a rhythmic
movement unit. A rhythmically moving limb or limb segment
can be viewed as a hybrid oscillator composed of a harmonic
dynamic (associated with the pendular dimensions of the
limb) and a relaxation dynamic (associated with neuromus-
cular and metabolic control processes; Beek & Beek, 1988;
Rosenblum & Turvey, 1988). A harmonic dynamic is stable
in time; a relaxation dynamic is less so. When coupled, the
component dynamics interact such that the relaxation dy-
namic may be “tuned” by the harmonic dynamic. In turn, the
harmonic dynamic may be “detuned” by the relaxation dy-
namic. Smaller pendular dimensions raise the possibility of
more pronounced contributions from the relaxation dynamic
and a consequent reduction in temporal stability. In the pre-
sent experiment, the rotational inertias of the two pendulums
were sufficiently large to guarantee a marked influence of the
harmonic dynamic in both cases; no differential effects due
to the pendulum were observed. The musicians did not shift
according to the unimodular structure of the Farey tree. Thus,
the pendulum’s relatively strong harmonic component may
have provided additional tuning of the musicians’ relaxation
dynamic above any tuning related to intrinsic rhythmic com-
petence. Unlike the musicians, the nonmusicians made more
mod | shifts than non-mod 1 shifts from W-expected. This
could have been due to the nonmusicians’ lack of specific
rhythmic competence as embodied in the relaxation com-
ponent; precisely because of such absence, their shifts were
free to be attracted by adjacent, unimodular resonances.

Separate four-way ANOVAs were conducted for the two
skill groups with independent variables as before. For the
nonmusicians, shift type was significant (mod 1 = 22.22%
vs. non-mod 1 = 2.22%), F(1, 6) = 28.73, p < .0l, as was
ratio type (simple = 5% vs. Fibonacci = 19.44%), F(1, 6)
= 14.98, p < .0l. There was also a significant interaction
between shift type and ratio type (mod 1: simple = 8.89%
vs. Fibonacci = 35.55%; non-mod 1: simple = 1.11% vs.
Fibonacci = 3.33%), F(l1, 6) = 7.09, p < .05. The simple
effects analysis indicated that more mod 1 than non-mod !
shifts occurred with the Fibonacci ratios (p < .01) and that

Measures of Performance of W-Actual as a Function of W-Expected in Terms
of Percentage of All Trials Averaged Across Subjects and Pendulum Mass

in Experiment 3

W-expected

Measure I:3 2:3 1:4 35 1:5 5:8
At any resonance 80.41] 74.37 56.25 36.25 22.08 36.04
Remaining at W-expected 72.08 55.83 51.25 4.79 20.42 4.79
Shifts to 1:1 0.0 0.0 0.0 0.0 0.0 0.0
Shifts to 1:2 0.0 0.0 0.0 0.0 0.0 7.29
To another resonance 8.33 18.54 5.0 31.46 1.67 23.96
Mod 1 shifts 6.67 12.29 50 250 1.67 22.29
Non-mod 1 shifts 1.67 6.25 0.0 6.46 0.0 1.67
Unparseable 19.59 25.63 43.75 63.75 77.92 63.96
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the ratio types were distinct in terms of mod 1 shifts only (p
<C .05). That is, an equivalent number of non-mod 1 shifts
occurred for both simple and Fibonacci ratios. No significant
effects were revealed for the four-way ANOVA conducted on
the musician data.

By way of summary, the focus is returned to the specific
question to which Experiment 3 was directed: When two
rhythmic movement patterns are drawn from the same level
of the Farey tree, are they necessarily alike in their dynamics?
On the basis of the preceding analyses, the answer is no.
However, we must be circumspect about the generality of this
answer, because the experiment contrasted only maximally
simple and maximally complex (Fibonacci) ratios. The ex-
periment did not provide any evidence about differences
among complex rhythms but only about a level’s most com-
plex rhythm in relation to its most simple rhythm. Nor did
Experiment 3 provide evidence on the potential inequality
between a level’s simple ratio and its non-Fibonacci complex
ratios. Future experiments can be directed at these other as-
pects of the question posed above. In the meantime, we can
turn to Experiments 1 and 2 for some measure of the like-
lihood that continued fraction differences among ratios trans-
late into dynamical differences among rhythmic movement
patterns bearing those ratios. Experiments 1 and 2 included
Fibonacci ratios and both simple and complex non-Fibonacci
ratios from the same Farey level. The data from those ex-
periments were examined using one-way ANOVAs. The re-
sults, summarized in Table 5, indicate that movement pat-
terns with Fibonacci ratios do indeed differ on measures of
persistence and change from movement patterns with non-
Fibonacci ratios, both simple and complex. Thus, the results
of Table 5 lend support to the continued fraction hypothesis
that ratios from the same level may exhibit different dy-
namics on the basis of their numerical substructure.

General Discussion

In this article, we have used procedures that allowed us to
impose simple rhythmic patterns (e.g., 1:2 and 1:3) or com-
plex, polyrhythm-like patterns (e.g., 2:3 and 3:5) on the
movement systems of human subjects. The significant fea-
ture of these procedures is that the subject executed the ex-

Table 5

Significant Differences in Percentage of Mod 1 Shifts
Between Fibonacci and Non-Fibonacci Ratios
Across Experiments 1-3 as a Function

of Pendulum Characteristics (p < .05)

Measure Fibonacci Non-Fibonacci
Experiment 1

1 Hz 3:5 < 3:4
Experiment 2

Long 5:8 > 4.7

Long 5:8 > 4:5*

Short 5:8 > 4:5
Experiment 3

500 g 5:8 > 1:5

100 g 3:5 > 1:4

*p = .054.
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perimentally desired patterns implicitly rather than explic-
itly. This was achieved by defining the subject’s focal task
as a simple oscillatory motion of one limb segment and in-
troducing as a backdrop for this focal task another periodic
process that was, from the perspective of executing the focal
task, subsidiary and perhaps even irrelevant. In Experiment
1 the focal task was the periodic motion of a hand-held object
to a memorized rhythm, and the subsidiary task was listening
to the beat of a metronome. In Experiments 2 and 3 the focal
task was the periodic motion of a hand-held object at a pace
dictated by a metronome, and the subsidiary task was main-
taining a pendulum oscillation at the subject’s comfort-mode
frequency. Using the frequency of either the focal periodic
process (Experiment 1) or the subsidiary periodic process
(Experiments 2 and 3) as the baseline frequency, we could
then choose the frequency of the other periodic process such
that the two periodic processes would form either a simple
or a complex rhythm. It could be said that through these
procedures, we “prepared” the human movement system at
the outset of a trial in a given rhythmic pattern and then
observed the ability of that person’s movement system to
sustain the given pattern. Although these rhythmic move-
ment patterns, referred to as W-expected, were only implic-
itly defined on the movement system (the subject neither
intended them nor knew the ratios that they composed), it is
nonetheless the case that their maintenance depended on the
dynamics of interacting (neural and neuromuscular) sub-
systems. Our research was based on the assumption that these
simple experimental tasks tap the natural dispositions of the
human movement system to settle into a relatively optimal
coordination. Failures to preserve initially prepared patterns
would, therefore, be revealing of dynamical principles un-
derlying the assembling, sustaining, and selection of rhyth-
mic coordination patterns.

The unimodularity hypothesis states that simple and com-
plex rhythmic movement patterns are constrained by a layout
of resonances ordered by the Farey tree. On those trials in
which a subject failed to preserve the rhythm in which he or
she was initially prepared, the experimental evidence reveals
that the subject was more likely to exhibit a rhythm that
related to the prepared ratio in a unimodular rather than non-
unimodular fashion. As outlined in the Appendix, the geo-
metrical interpretation of a unimodular shift is that it is op-
timal in the sense of preserving invariant the translatory
symmetry underlying the transformation. In summaty, per-
formance conformed to the resonance layout: Whenever an
initially prepared rhythm failed to be sustained, the shift
tended to be toward neighboring, unimodular ratios.

Continuous with numerical studies of circle map dynamics
(Artuso, Cvitanovic, & Kenny, 1989; Cvitanovic, Shraiman,
& Soderberg, 1985), the continued fraction hypothesis states
that the performance of a rhythmic movement pattern is af-
fected not only by the geometry of unimodular ratios but also
by the complexity of the prepared ratio as indexed by its
continued fraction substructure. The hypothesis suggests, for
example, that simple rhythms distinguish from complex
rhythms because their simpler continued fraction substruc-
ture implicates a simpler nesting of rhythmic subtasks for
their execution (see Schmidt et al., 1991). It also suggests that
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Fibonacci complex rhythms will distinguish from non-
Fibonacci complex rhythms for the same reason. Experimen-
tally, it was shown that rhythms from the same Farey level
were not sustained with the same probability. In Experi-
ment 3, a subject initially prepared in a simple ratio from a
given Farey level tended to make fewer shifts to mod 1 ra-
tios than when prepared in a Fibonacci complex ratio from
the same level. Examination of the prepared complex
rthythms of all three experiments revealed a nonuniformity
in the prevalence of shift behavior among rhythms from
the same Farey level. In summary, the results of Experi-
ments 2 and 3 indicate that Fibonacci rhythms were pre-
served less well than non-Fibonacci rhythms, consistent
with the fact that Fibonacci ratios have a maximally com-
plex continued fraction substructure.

Reexamining Previous Research

Previous explanations of both unimanual and bimanual
rhythmic performance have depended on arbitration by in-
ternal codes as the prime coordinating candidate. The as-
sumption that unimanual performance of a nonisochronous
rhythm involves independent timekeepers was tested using
the task of tapping a serial thythm composed of two suc-
cessive durations related either as simple (1:2, 1:3, or 1:4) or
as complex (2:3, 2:5, 3:4, 3:5, or 4:5) ratios (Povel, 1981).
It was concluded that the durations were not independently
coded by the subject but integrated in some manner. During
reproduction in a continuation paradigm, a subject sponta-
neously modified interpulse ratios below .5 toward .5 and
ratios greater than .5 toward 1.0. The following results from
Povel (1981, Tabie 2) indicate that shifts from expected to
actual ratio may be compatible with unimodular bifurcation
sequences in the Farey tree (the second ratio shifted to refers
to a pattern of longer cycle time): .25 to .33 or .33 (1:4 to 1:3);
33 to .37 or .39 (1:3 to 2:5); .4 to .45 or .44 (2:5 remained
2:5); .5 to .48 or .47 (1:2 remained 1:2); .6 to .48 or .51 (3:5
to 1:2); .66 to .49 or .55 (2:3 to 1:2); .75 to .63 or .66 (3:4
to 5:8 or 2:3); and .8 to .74 or .72 (4:5 to 3:4). Similarly, in
the tapping data of Summers, Hawkins, and Mayers (1986,
Table 2), the ratio shifts for either musicians or nonmusicians
were .25 to .31 or .36 (1:4 to 1:3); .33 to .39 or .41 (1:3 to
2:5); .5 to .48 or .46 (1:2 remained 1:2); .66 to .52 or .54 (2:3
to 1:2); and .75 to .61 or .71 (3:4 to 3:5 or 3:4). These results
were interpreted as evidence that intervals are perceived and
produced according to Gestalt processes of “distinction” and
“assimilation,” which either lengthen (toward 1:2) or shorten
(toward 1:1) the intervals between events (Fraisse, 1978,
1982, 1987; Povel, 1981; Summers, Hawkins, & Mayers,
1986; Summers, Bell, & Burns, 1989). These results are also
consistent with the unimodular geometry of resonances,
which may provide a simpler and more general account.

The data from Deutsch (1983) on bimanual polyrhythm
tapping involved a dependent measure (fluctuation in per-
formed ratio) different from the present analysis but may also
support the resonance constraints hypothesis. As W-actual is
drawn from higher order levels in the Farey tree (as in Deut-
sch’s experiment), width and stability of the resonance de-
creases, and correspondingly, fluctuations in performance
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will increase. Additionally, Deutsch’s data reveal a system-
atic distinction in the performance stability of Fibonacci (3:5)
and non-Fibonacci (2:5) polyrhythms (see also Peper et al.,
1991).

Relevant to the unimodularity hypothesis and the tasks
used here is the finding that a rhythm not explicitly controlled
by the subject, the respiratory cycle, may become mode
locked to the locomotory cycle. In seasoned marathon run-
ners, these cycles are mode locked not only at 1:2 (primarily)
but also at 1:4, 1:3, 2:3, and 2:5, whereas novice runners
exhibit no such entrainment (Bramble & Carrier, 1983). In
addition, as speed increases, shifts occur between these ra-
tios. In contrast, such cycles are limited to 1:1 in quadrupeds,
possibly because of forces on the thoracic cavity (Alexander.
1989). Entrainment of respiration to locomotion has also
been found in bicycle ergometry tasks (Kohl, Koller, & Jager,
1981), in which a similar patterning of shifts was observed
(Paterson et al., 1986). These shifts may permit a greater
economy of effort for the pulmonary and locomotor systems
(Paterson et al., 1986), because the metabolic cost of en-
trained cycling is significantly lower than that of nonen-
trained cycling (Garlando, Kohl, Koller, & Pietsch, 1985).
We suspect that unimodular shifts, because they preserve
invariant the geometry of mode locking (see the Appendix).
may provide an efficient “‘gearing” of the rhythmical move-
ment apparatus.

Dynamical Basis for Shifts in Complex Rhythms

Two possibilities exist to account for the method by which
the observed shifts in coordination occurred. We have as-
sumed that subjects perform in resonances corresponding to
the region at or below the K = 1 line where the resonances
do not overlap (Figure 2). For a shift to occur from a ratio
at a higher order level to a more stable mod 1 ratio, it is
necessary to “skip across” a less stable, narrower Arnold
tongue from a higher order level of the Farey tree (see Figure
2). For example, when W-expected is drawn from Level 2
(e.g., 1:3 or 2:3), the Level 3 ratios, which have relatively
strong attractors (wide Arnold tongues), may capture coor-
dinations en route to a lower order ratio such as 1:2 or 1:1.

Also exploring Farey tree dynamics, Peper et al. (1991)
made the alternative assumption that polyrhythm perfor-
mance may involve a high value of coupling in the region
where resonances overlap (i.e., K > 1). Their method of
inducing shifts required a subject to tap continuously a bi-
manual polyrhythm as a pacing frequency was increased un-
til a spontaneous bifurcation, analogous to a second-order
phase transition (Kelso et al., 1987), occurred at another
Farey ratio. Because of the overlapping resonances where
K > 1, mode locking is unavoidable. However, theory in-
dicates that this leads to deterministic chaos, that is, arbi-
trarily small changes in initial phase conditions will project
the dynamical system into a different ratio depending on
which ratios overlap. In contrast to such predictions, human
coordination is relatively robust under conditions of small
perturbations to phase, and chaotic dynamics are generally
not observed. Experiments have shown that 1:1 mode lock-
ing may be maintained when the natural frequency ratio )
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of the hand-held pendulums decreases. This occurs under
the assumption that subjects perform in the widest 1:1
resonance, which, when K is increased to a value of ap-
proximately 6.5, traverses all {)} values above the K = 1
line (see Figure 2; Schmidt et al., 1991). Thus, although a
Farey tree geometry appears to govern shift behavior, it is
uncertain how this abstract geometry translates into actual
transition mechanisms.

Concluding Remark

The present research suggests that resonance, as a gen-
eral principle governing self-organized processes, may be
applicable to the coordination of human movement within
a polyrhythmic context (Beek, 1989; deGuzman & Kelso,
1991; Turvey, 1990). This suggestion is continuous with
Gibson’s (1966, 1979) suggestion that resonance may pro-
vide a better metaphor for perception—action than compu-
tation. An advantage of a physicalist explanation through
resonance is that it cuts across the organism-environment
boundary and advances an appreciation of the lawful mu-
tuality permitting the coordination of organisms and their
surroundings.
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Appendix

Geometrical Interpretation of Unimodularity

A lattice is a figure of lines and defines a figure of points. An
infinite two-dimensional space of lines has points defined where the
lines intersect and is called a point lattice. The lattice formed by
lines drawn parallel to the rectangular coordinate axes such that it
is divided into unit squares (each with an area = 1) is called the
Jundamental lattice, A. Any lattice point may be considered an
origin, O, and the properties of the lattice are symmetrical about O.
When two lattices determine the same point lattice, they are said to
be equivalent. Figure A1 depicts the point lattice defined by the two
equivalent lattices based on OP, OR, and OR, OQ, where O(0, 0},
P(0, 1), Q(1, 1) and R(1, 2) are points on the A lattice.

We may associate numbers with each point of a point lattice such
that each has coordinates (x, v). This set of numbers constitutes a
modulus of numbers because the sum and difference of any two
members of the set are themselves members of the set (Hardy &
Wright, 1938). If P and Q are the points (x,, y,) and (x,, y;) of A,
then any point of a lattice based on P and @ has the following

coordinates:
x = mx, + nx,, y =my, + ny,,

where m and n are integers.

P

o

Figure Al. The point-lattice defined by the two equivalent lat-
tices based on OP, OR, and OR, OQ, where 0(0, 0), P(0, 1), O(1,
1) and R(1, 2) are points on the fundamental lattice, A.

A transformation on the A lattice—

x' = ax+ by, ¥ = cx +dy,

where a, b, ¢, and d are integers—transforms any point of the A
lattice into some other point of the A lattice:

X1 _labllx
)" “H{ed ¥l
Solving for x and ¥,

_dx’ — by’
" ad - bc’

If the denominator ad — bc = *1, then integer values of x" and
y' give integer values of .x and v, and every point (x', ¥') of the A
lattice corresponds to some other point (x, ) in A, that is, a one-
to-one mapping. Under conditions where the denominator is *1,
such transformations of the A lattice are called unimodular (Hardy
& Wright, 1938). Thus, a matrix of integer elements with deter-
minant (ad - bc) = * 1 is called a unimodular matrix (Weyl, 1980).
If two equivalent lattices have bases b1 and b2, each consisting of
linearly independent vectors, then such lattices are also connected
by a unimodular transformation (Figure Al). Because the deter-
minant of a transform indexes the area of the object, a unimodular
transformation preserves area, and in this sense, the underlying
geometry remains invariant: All lattice points are mapped onto other
lattice points, and none are skipped.

If the Farey ratios p/g are defined as points on the fundamental
lattice A, each with coordinates (p, ¢), then all such points are
coprime and said to be visible from the origin because there are no
intervening lattice points on a line drawn from O to (p, g). The set
of all such visible points defines a convex set, in particular, a
Minkowski “Strahlkorper” or “ray body"” (Coxeter, 1961; Hardy &
Wright, 1938). Two Farey ratios, a:c and b.:d, corresponding to
Points P (a, ¢) and Q (b, d) of A, define a new lattice based on OP
and OQ that we call a “Farey lattice.” If P and Q have a unimodular
relationship, then the edges of the parallelograms based on OP and
OQ demarcate convex sets such that every point of a set is visible
from every other point in the set because there are no intervening
Farey points. Conversely, a Farey lattice generated from non-
unimodular basis vectors defines nonconvex sets consisting of non-
visible points, because there are intervening points. Figure A2 de-
picts the fundamental lattice with superposed Farey points, together
with the Farey lattice and parallelogram generated by ratios with
either a unimodular (A) or a non-unimodular (B) relationship. As

cx' — ay'

* Y= ad = be”
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Figure A2. The fundamental lattice with superimposed Farey
points is shown, together with the Farey lattices that would be
generated by ratios having either unimodular relation—(1:2) and
(2:5), as in A—or nonunimodular relation—(1:2) and (4:5) as in B.
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shown, the number of intervening points equals the degree of
modularity less one; that is, 1:2 and 2:3 are unimodular (2*2 -
1*3 = 1: no intervening Farey points) and 1:2 and 4:5 are non-
unimodular (2*4 — 1*5 = 3: two intervening Farey points). The
existence of intervening points implies that the lattice determined
by two non-unimodular ratios is nonequivalent to the fundamen-
tal lattice A, and because the determinant of such a transform
will be greater than unity, such a transformation can no longer be
said to preserve as invariant the translatory symmetry relating
both lattices (i.e., the non-unimodular transformations break sym-
metry). For the unimodular shifts, the Farey lattice has optimal
form because such transformations determine the translatory
symmetry operations that relate all points; such transformations
constitute a basis or generator of the lattice symmetry and pre-
serve closure of the lattice.

Received February 12, 1992
Revision received January 13, 1993
Accepted January 19, 1993 =

or

Search Opens for Editor of New APA Journal
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Psychological Methods will be devoted to the development and dissemination of methods
for collecting, understanding, and interpreting psychological data. Its purpose is the
dissemination of innovations inresearch design, measurement, methodology, and statistical
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