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Handedness and the Asymmetric Dynamics of Bimanual
Rhythmic Coordination

Paul J. Treffner and M. T. Turvey
University of Connecticut

Human handedness was investigated in a 1:1 interlimb rhythmic coordination in which
consistent and inconsistent left-handed and right-handed individuals oscillated hand-held
pendulums. Mean phase difference (dg..1c) and its standard deviation (SD¢) were evaluated
as functions of mode of coordination (in-phase vs. anti-phase) and the symmetry conditions
imposed by controlling the natural frequencies of the left and right pendulums. The depen-
dencies of ¢, and SD¢ on coordination mode and imposed symmetry were found to be
systematically affected by handedness. The data were consistent with an elaboration of the
established order parameter dynamics of interlimb rhythmic coordination. The elaboration
includes additional 27 periodic terms that break the symmetry of those dynamics when the
natural frequencies of the component rhythmic units are identical.

The functional asymmetry of the upper limbs and of the
cerebral mechanisms that subserve them is well-known
(e.g., Corballis, 1991; Herron, 1980, Kinsbourne, 1978;
Porac & Coren, 1981). For most people there is a bias
toward using the right hand for manual tasks; although the
two hands undoubtedly work together as a synergy (Guiard,
1987a), in both unimanual and bimanual tasks, performance
distinctions between the upper limbs can be readily ob-
served (e.g., Summers, 1990). Although few distinctions
can be stated formally in strictly quantitative terms, it is
apparent that left-handedness is not simply the converse of
right-handedness and that, as a general rule, any asymmetry
found in right-handed (RH) people tends to be smaller and
in the opposite direction in left-handed (LH) people (Coren,
1990; Peters, 1990a; Peters & Durding, 1979; Springer &
Deutsch, 1985).

The degree of laterality expressed is, however, a function
of the particular task constraints. For example, musicians
who play keyboard instruments (which necessarily permit
greater independence of the hands), express a greater degree
of handedness than do musicians who play strings and
woodwinds (which necessarily require integrated move-
ments; Christman, 1993). In a simple tapping task, inter-
manual differences depended on the degree of excursion of
the fingers with smaller amplitudes entailing greater vari-
ability in force precision, especially of the left hand of
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RH participants (Peters, 1980). In addition, the rate at
which a task is performed has been shown to influence
expressed laterality with smaller intermanual differences
produced by lower when compared with higher rates of
performance (Rouselle & Wolff, 1991; Todor & Smiley,
1985; Wolff, Hurwitz, & Moss, 1977). It is also known
that the hands can produce complex, nonisochronous
thythms (Treffner & Turvey, 1993), but performance is
optimal provided the preferred hand implements the faster
thythm (Peters & Schwartz, 1989). This requirement has
been interpreted in terms of the degree of attention that
can be directed at the preferred or nonpreferred hand
(Peters, 1981, 1985).

Others have investigated laterality from the perspective of
dual-task paradigms in which both linguistic and manual
activities are performed concurrently (Hammond, 19903;
Peters, 1990b). The interaction between tasks supposedly
represented in the left hemisphere (thought to control both
linguistic ability and movements of the right hand) led
Kinsbourne and Hicks (1978) to adopt an account of later-
ality in terms of competition within a “functional cerebral
space.” However, although most left-handers are left-hemi-
sphere-dominant for speech, the left-handers were subse-
quently shown to exhibit interference in the left hand rather
than the right hand (Rey, Dellatolas, Baucard, & Talairach,
1988). This evidence indicates that the assumed competition
may not take place where the motor commands to the left
hand are issued (Peters, 1990b) but that such interference
effects may be related to more general timing constraints as
when both hands show increased variability under simulta-
neous, irregular speech (Todor & Smiley, 1985). In this
article, we draw on these results in developing an account of
handedness from the perspective of dynamics. That is, using
the language of nonlinear dynamical systems, an alternative
description may be developed that captures more precisely
the intermanual cooperation and competition inherent in
simple bimanual acts (Carson, 1993).
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Broken Symmetry and 1:1 Frequency Locking

Symmetries are formed and broken in dynamical systems
(Stewart & Golubitsky, 1992). That is, the instability of a
symmetric state (with a low degree of order) usually evolves
in such a way that it leads to states of lesser symmetry but
greater stability (and higher degree of order). Let the state of
bilateral symmetry of the hands (H) be designated by AH =
(L — R) = 0; then left-handedness (L) is AH > 0 and
right-handedness (R) is AH < 0. In strictly dynamical terms,
the rarity of AH = 0 in humans would reflect a fundamental
instability in the bilateral symmetric pattern. The broken
symmetries of AH > 0 and AH < 0 would reflect the stable
solutions to the bifurcation from AH = 0, with AH < 0
being more accessible than AH > 0. Therefore, if human
handedness originated strictly in the nature of the dynamics
of the human movement system, then questions of why
AH = 0 is unstable and why AH < 0 is the most frequently
observed broken symmetry would be legitimate questions.
It is doubtful, however, that any left-right asymmetry ex-
hibited by a biological system is understandable through
dynamical instabilities at the scale at which it is manifest
(Bock & Marsh, 1991). In the case of humans, for example,
handedness is not likely to originate at the scale of uni-
manual or bimanual acts. If any consensus is to be found on
the origin of handedness in its varied forms (as contrasted
with its genetic propagation once it has originated), it is that
handedness may be the outcome of nature repeatedly am-
plifying the tiny asymmetry of the weak interaction between
elementary particles (Mason, 1991).

The focus of our research was on handedness in the most
commonplace interlimb coordination, one that requires both
limbs to execute the same spatiotemporal pattern. In ordi-
nary human walking, for example, contralateral limbs ex-
hibit 1:1 frequency locking as do ipsilateral limbs. Although
stereotypic and apparently simple, 1:1 frequency locking of
limbs and limb segments results from a complex of com-
petitive and cooperative processes (Kelso & Jeka, 1992;
Schmidt, Beek, Treffner, & Turvey, 1991; Schmidt,
Treffner, Shaw, & Turvey, 1991). Because of their differ-
ence in size, an arm and a leg will differ in their uncou-
pled, natural frequencies (eigenfrequencies). The preferred
frequency of the shorter and lighter arm is higher than
that of the longer and heavier leg. For an arm and a leg
to complete their respective cycles in the same amounts
of time, that is, to exhibit a single coupled frequency, the
competition between their natural frequencies must be
overcome. In studies of the oscillating fins of the fish
(Labrus) von Holst (1939/1973) referred to the coupling
or cooperation between the two rhythmically moving fins
as the “magnet effect” (i.e., each tries to align the other
to its own frequency) and the competition between them
as the “maintenance tendency” (i.e., each tries to continue
oscillating at its preferred, uncoupled frequency). In this
research, we studied human handedness in terms of simi-
lar competitive and cooperative processes.

Order Parameter Dynamics

The dynamics of interlimb rhythmic coordination have
been modeled successfully by

b= Aw — asin(¢) — 2bsin(24) + O & (D)

an order parameter equation developed by Haken, Kelso,
and Bunz (1985), Schoner, Haken, and Kelso (1986), and
Kelso, DelColle, and Schéner (1990). In Equation 1, ¢ is
the time derivative of the phase difference, ¢ = (6 — 6g),
between the left (L) and right (R) oscillators. Because ¢ =
(6, — 6g) is a collective variable that captures the spatio-
temporal organization of the rhythmically moving limbs,
and because it changes more slowly than the variables
characterizing the states of the rhythmically moving limbs
(e.g., velocity, amplitude), it can be considered an order
parameter for interlimb coordination (e.g., Haken, 1977,
1983; Haken et al., 1985; Kelso, Schoner, Scholz, & Haken,
1987). Aw is the difference (w; — wg) in eigenfrequency
between the two oscillators, a and b are coefficients that
affect the interoscillator coupling, and &, is a Gaussian white
noise process (arising from the multiplicity of underlying
subsystems) functioning as a stochastic force of strength Q.

In our research, the importance of Equation 1 lies in its
predictions of the stationary states of interlimb coordination
when the symmetry of the coordination dynamics is broken
or lowered. The latter occurs when the individual biological
oscillators are no longer equivalent, such as when the two
rhythmically moving limb segments differ in their eigenfre-
quencies, that is, Aw # 0. Under such circumstances, a
greater Aw entails a lower degree of symmetry. The station-
ary states can be determined by solving Equation 1 numer-
ically for ¢ = 0. Graphically, solutions to Equation 1 with
¢ = 0 can be obtained by plotting its right-hand side
(excluding the stochastic force) against ¢ for various pa-
rameter values (Kelso et al., 1990). The stationary values,
banier T given where ¢ crosses the ¢ axis. These station-
ary states are stable if dd/dé, the gradient at the zero-
crossing, is negative and unstable if dd/d¢d at the zero-
crossing is positive. The degree of stability is related to
ldg/del; that is for a constant , the steeper the (negative)
slope at the zero-crossing, the more stable is the station-
ary state (Gilmore, 1981). For parameter values of a > 0
and b > 0 exceeding a critical value of b/a, negative
zero-crossings occur in the vicinity of both ¢ = 0 (in-
phase) and ¢ = 7 (anti-phase).! Equation 1’s predictions
about stationary states in interlimb 1:1 frequency locking
include the following:

1. When Aw = 0, ¢y €quals 0 and m, for any b/a.
2. When Aw = 0, ld¢/d¢! is greater at ¢, = O than
at d’stable = m

' For Aw = 0, oy in the vicinity of + 77 (anti-phase coordi-
nation) is eliminated at b/a = .25, independently of the absolute
values of a and b. For Aw # 0, the critical value of b/a differs from
.25 and depends on the parameters’ absolute values. The predic-
tions that follow are for b/a values larger than the critical b/
values.
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3. When Aw # 0, ¢y # 0 and gy # T

4. When Aw # 0, the displacement of ¢y, from 7
is greater than that of ¢y, from 0.

5. When Aw # 0, ld¢/ddl at ¢y, is smaller for
larger Aw.

6. When Aw # 0, Idd/dd! at ¢y, = 0 is greater than
at ¢stable =

7. For a constant b/a, larger values of Aw # 0 are
associated with larger displacements of ¢, from
¢ = 0 and ¢ = . Similarly, for a given Aw # 0,
the smaller the magnitude of b/a, the larger are the
displacements of ¢,y from ¢ = 0 and ¢ = .

8. For a constant b/a, the larger the magnitude of Aw
# 0 the smaller is Id$/d| at ¢, Similarly, for
Aw = 0 and for a constant Aw # 0, the smaller the
magnitude of b/a, the smaller is |dd/ddl at dgypie.

Some of these predictions are visible in Equation 1 when
it is restricted to the in-phase mode. Proximity to ¢ = 0
means that Equation 1 may be linearized (¢ is sufficiently
small so that sind = ¢) (Haken, 1988; Schoner et al., 1986).
Then, for ¢ = 0 and ignoring the noise term, Equation 1
becomes

‘bstable = Aw/ (a + 4b)~ (2)

Predictions similar in form to Predictions 1-8 are also
derivable from the nonlinear coupled oscillator dynamics
proposed by Cohen, Holmes, and Rand (1982), Rand, Co-
hen, and Holmes (1988), and Haken (1983):

¢ = Aw — Ksing 3)
d’stable = arCSin(Aw/K), (4)

where K is the coupling strength (positive for in-phase and
negative for anti-phase). To accommodate fluctuations in
coordination, a stochastic force of the kind identified in
Equation 1 can be added to Equation 3 (Schmidt & Turvey,
1994; Turvey, Schmidt, & Beek, 1993). The sine coupling
function of Equation 3 is common to many formulations of
linked biological oscillators (e.g., Niebur, Schuster, Kam-
men, & Koch, 1991; Daido, 1992; Strogatz & Mirollo,
1988). Equation 1, however, underscores that more compli-
cated nonlinear forms are demanded by the experimental
data on interlimb coordination.

Most of Predictions 1-8 have been evaluated and con-
firmed through experiments that manipulated ¢, (the in-
tended coordination of 0 or ), Aw (defined as w; — wyg),
and the coupled frequency of coordination, w. (which is
inversely correlated with b/a). The quantities ¢, Aw, and
w,. were manipulated within a procedure that involves a
seated person oscillating hand-held pendulums parallel to
the sagittal plane about an axis in the wrist (with other joints
fixed; Kugler & Turvey, 1987). The pendulums can vary
physically in length and mass (e.g., length of shaft, magni-
tude of attached weights). The eigenfrequency of an indi-
vidual “wrist-pendulum system” can be estimated as the
eigenfrequency of the equivalent simple gravitational pen-
dulum, w = (g/L)"?, where L is the simple pendulum length
and g is the constant acceleration attributable to gravity. In

the experiments supporting Predictions 1-8, Aw was con-
trolled through differences in the lengths of the left and right
pendulums, and @, was the comfort frequency freely chosen
by the participant or controlled by a metronome (Schmidt,
Beek, Treffner, & Turvey, 1991; Schmidt, Shaw, & Turvey,
1993; Schmidt & Turvey, 1994; Sternad, Turvey, &
Schmidt, 1992; Turvey, Rosenblum, Schmidt, & Kugler, 1986).

New Observables for Studying Left-Right
Asymmetry and Handedness

The order parameter dynamics identified earlier provide
new measures (see Carson, 1993) by which the contribution
of the body’s functional asymmetry AH to interlimb rhyth-
mic coordinations can be determined. In this research we
focused on two primary observables:

1. dgapie patticularly its deviation from the intended
(y) phase ¢, = 0 or ¢, = 7. Equation 1 predicts
a systematic dependence of the magnitude of ¢,y
on Aw and, therefore, a systematic dependence of
Ibsiabte — Pyl 0n Aw. Given that the sign of Aw =
(wp — wg) reflects which hand-pendulum system
has the higher frequency, the magnitude of |g,pie
— ¢yl may depend not only on the absolute mag-
nitude of Aw but also on its sign if AH (the intrinsic
functional asymmetry of the body) interacts with
Aw (the imposed asymmetry on the order parameter
dynamics).

2. The standard deviation of ¢. Equation 1 says that
the degree of stability of ¢, indexed by Idd/
de¢l, changes with Aw and the coupling coefficients
a and b. At issue in our research was whether AH,
the difference between the hands, would affect the
fluctuations of interlimb coordination and, if it did,
to what extent the effect was exerted through Aw.

Method

Farticipants

Forty undergraduates (14 men and 26 women) at the University
of Connecticut participated in the experiment in order to attain
course credit. Twenty defined themselves as RH and 20 defined
themselves as LH. In accordance with research by Peters (1990a,
1990c, 1991, 1992; Peters & Servos, 1989) indicating a strong
performance distinction between the population of self-labeled
left-handers who predominantly prefer the left hand for manual
activities (consistent left-handers) and those who are less asym-
metrical with respect to preference (inconsistent left-handers), the
self-labeled left-handers were further subdivided on the basis of
their response to a short questionnaire regarding which hand they
preferred in certain tasks (i.e., holding a hammer, combing hair,
holding a spoon, brushing teeth, writing and drawing, throwing a
ball). Because throwing has been shown to be a strong predictor of
consistency in LH individuals (Peters, 1990a, 1990c; Peters &
Murphy, 1993), if an LH participant gave a response of “right hand
or either” to the question regarding throwing a ball, and to at least
one other question (excluding writing), then he or she was called
an inconsistent left-hander (ILH); otherwise, the participant was
called a consistent left-hander (CLH). There were 4 CLH and 6
ILH in the antiphase group and 6 CLH and 4 ILH in the in-phase
group. The 20 RH participants were assigned to a group perform-
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ing the in-phase mode or a group performing the anti-phase mode
by order of appearance at the laboratory. A similar assignment was
made for the 20 LH participants. Therefore, there were four groups
of 10 participants each: RH in-phase, RH anti-phase, LH in-phase,
and LH anti-phase.

Apparatus

A participant sat in a specially designed chair with arm rests that
permitted comfortable support of both left and right wrists during
oscillatory movements. The chair also provided leg rests that
permitted raising the legs toward the horizontal in order to avoid
interference with data collection. Kinematic data were collected
using a three-dimensional sonic digitizer (SAC, Westport, CT) and
associated MASS kinematic analysis software (Engineering Solu-
tions, Columbus, OH). For collecting motion data on pendulums
oscillated by hand, high-frequency sound emitters (30 mm long
and 5 mm wide) were attached to the ends of the pendulums. The
sounds emitted were detected by four microphones aligned parallel
to the ground plane at a vertical distance of 60 cm below the
participant’s chair. The digitizer calculated the distances of the
emitter from each microphone, using the three least noisy records
to pinpoint the position of the emitter in 3-space at the time of the
emission. The signal was sampled at 90 Hz, passed through an
A-D converter, and stored on a PC computer’s hard disk. Subse-
quent PC and Macintosh routines computed the continuous relative
phase at intervals of 44 ms of the original time series of pendulum
phase.

Materials

Each pendulum consisted of an aluminum rod of 1.2 cm diam-
eter inserted 7.5 cm into a cylindrical wooden handle of 2.5 cm
diameter and 12 cm length. Three pendulums were used: one for
which the aluminum rod was 56 cm in length with a 500-g steel
cylinder (outside radius = 2.5 cm, inside radius = 0.61 cm,
height = 3.3 cm) attached at the end opposite the handle, one for
which the aluminum rod was 45 cm in length with a 100-g attached
steel cylinder (outside radius = 1.9 cm, inside radius = 0.6 cm,
height = 1.1 cm), and one for which the aluminum rod was 26 cm
in length with a 100-g attached steel cylinder (of the same dimen-
sions as the preceding). As noted in the introduction, the eigen-
frequency of an individual wrist-pendulum system can be esti-
mated as the eigenfrequency (in rad/s) of the equivalent simple
gravitational pendulum, o == (g/Ls)"/%. The quantity L is calcu-
lable from the mass and spatial magnitudes of the aluminum rod,
the wooden handle, the added steel cylinder, and the hand mass
through the standard methods for calculating the first and second
moments of any arbitrary rigid body oscillating about a fixed point
and representing it as a simple pendulum oscillating about the
same point (Kugler & Turvey, 1987). The ws of the three wrist-
pendulum systems were 5.72, 4.69, and 4.17 rad/s. Five coupled
conditions were formed by combining the three systems according
to Aw = (&, — wg) = (4.17 — 5.72), (4.17 — 4.69), (4.17 — 4.17),
(4.69 — 4.17), and (5.72 — 4.17), yielding the five Aw values
of —1.55, —0.52, 0, 0.52, and 1.55.

The eigenfrequency of the coupled system was also estimated
under the assumption that it would be the preferred time scale of
the right and left wrist-pendulum systems coupled such that 6 is
always, at every instant, equal to 6; or to (6, + m) (Kugler &
Turvey, 1987; Sternad et al,, 1992). The latter ideal would be
achieved if the coupling between the two oscillators was function-
ally equivalent to that of a rigid connection (Kugler & Turvey,

1987). The simple pendulum equivalent L, of a compound pendu-
lum so composed (i.e., of two pendulums connected by a rigid bar)
is given by

L, = (m2 + mB)/(mly + myly), )

where m; and [, refer to the mass and the equivalent simple
pendulum length, respectively, of an individual (compound) pen-
dulum system. Through Equation 5, two coupled pendulums of
lengths L, and L, can be interpreted as a virtual (v) pendulum of
length L, with an eigenfrequency w, = (g/L,)". The values of w,
for the three values of |Awl| were 4.48, 4.35, and 4.17 rad/s. These
values expressed as periods (1.402, 1.444, and 1.509 s, respec-
tively) defined the temporal units for setting the metronome tem-
pos used to control the coupled frequencies. Although the fre-
quency of coordination for the coupled system had been planned as
being equal to w,, the coupled system’s eigenfrequency, a com-
putational error led to its marginal overestimation. Consequently,
each coupled system was oscillated at a frequency marginally
greater than its eigenfrequency: 1.07 w,. The purpose of equating
the coupled frequency of each system in units of w, was to render
them alike in terms of coupling strength, indexed in Equation 1 by
b/a (see Sternad et al., 1992).

Procedure

The participant sat in a chair and placed his or her arms on the
arm rests. He or she was given a pendulum in each hand and told
to swing them from the wrist joints in the sagittal plane. Further-
more, the participant was told to look straight ahead rather than at
the pendulums. Each participant was told to grasp the handles
firmly throughout the oscillations prohibiting, thereby, motions of
the pendulum relative to the hand. After receiving instructions
from the experimenter, each participant was given practice swing-
ing a pendulum pair. The participant was asked to begin swinging
the pendulums at the tempo prescribed by an electronic auditory
metronome (that emitted short duration blips) positioned 150 cm
behind the participant’s seat and to say “ready” when that goal had
been achieved (usually in a matter of 5-10 s). The experimenter
then started to record the trial for 20 s, during which the metro-
nome remained on. At the end of the data collection, there was a
short pause of 1 min while data were stored on disk and the
experimenter replaced the pendulums with another pair for the
next trial. Each condition had 4 trials and the order of the condi-
tions was completely randomized across the 20 trials. Participants
received no feedback about their performance. The overall exper-
iment took about 30 min per participant.

Data Reduction

The data records were subjected to software analyses to deter-
mine the time series of the individual wrist-pendulum phase angles
6, and 0y, the time series of the relative phase angle ¢ between the
two wrist-pendulum systems, and the means and standard devia-
tions of these quantities. A peak picking algorithm was used to
determine the time of maximum forward extension (ulna exten-
sion) and maximum backward extension (ulna flexion) of the
wrist-pendulum trajectories. From the peak forward extension
times, the mean frequency of oscillation for the nth cycle was
calculated as

fr = U(time of forward extension,,

— time of forward extension, . {). (6)
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The mean frequency of oscillation of a trial was calculated from
these cycle frequencies.

The phase angle of each wrist-pendulum system (6,) was cal-
culated for each sample (90/s) of the displacement time series to
produce a time series of 6,. The phase angles of wrist pendulum i
at sample j (6,;) were calculated as

6; = arctan(x;; /Ax;), M

where the numerator on the right-hand side is the velocity of the
time series of wrist pendulum i at sample j divided by the mean
angular frequency for the trial, and Ax, is the displacement of the
time series at sample j minus the average displacement for the trial.
The relative phase angle (¢) between the two coordinated wrist-
pendulum systems was calculated for each sample as the magni-
tude of 6, — 6. Equation 7 provides a reliable basis for deter-
mining ¢ because the waveforms of both left and right oscillators
are of like kind (almost sinusoidal because of the constraints of
pendular motion) and because the center of oscillation of each
oscillator is fixed by the seating arrangement—the oscillations
take place about the wrist joints, and the forearms and wrists of
each upper limb maintain constant positions during the course of
each trial. The ¢ that the participant intended to produce was 0 rad
(in-phase) or 4 rad (anti-phase). The ¢ time series allows for an
evaluation of how the participant satisfied these task demands. The
mean ¢ (interpreted as ¢,,.,.) and its standard deviation were
calculated for each trial and condition.

Results and Discussion
1:1 Frequency Locking

A Handedness (LH vs. RH) X Mode (in-phase vs. anti-
phase) analysis of variance (ANOVA) was performed on the
ratio of the average frequency of the right wrist-pendulum
oscillation to the average frequency of the left wrist pendu-
lum. No main effects of handedness or mode were found,
and there was no interaction (all Fs < 1). For in-phase and
anti-phase, and for LH and RH participants, the frequency
ratio did not differ from unity (ps > .05, two-tailed). That
is, the required 1:1 frequency was, in the mean, reliably
achieved.

Phase

Figure 1 shows the magnitudes of ¢y, for the two
groups (¢, = 0, ¢, = m) of RH participants and for the two
groups of LH participants as a function of Aw. Inspection of
Figure 1 suggests that participants in all four groups con-
formed to the general outcome expected from Equation 1,
which is in agreement with the results of previous research
(Schmidt et al., 1993; Schmidt & Turvey, 1994; Sternad et
al.,, 1992; Turvey & Schmidt, 1994). Specifically, ¢gapic
was closest to 0 and 7 when Aw = 0, as expected from
Prediction 1, and was increasingly displaced from O and =
by increasing values of Aw # 0, as expected from Predic-
tion 3. The analysis of ¢, Was conducted in terms of
(Psapie — Py and proceeded in two steps. Step 1 focused on
the symmetry condition Aw = 0. Step 2 focused on the four
broken symmetry conditions: Aw = ~1.55, Aw = —0.53,
Aw = 1.55, and Aw = 0.53.

© LH in-phase (a)
# RH in-phase

¢stable (rad)
=

1 LH anti-phase (b)

n i-
16 RH anti-phase

3.4

32

¢stable (rad)

34
2.8

2.6
2 15 -1 -5 0 5 1 15 2
Aw (rads™!)

Figure 1. ¢ as a function of Aw and handedness for (a)
in-phase (¢, = 0) and (b) anti-phase (¢, = =) coordination.
RH = right-handed; LH = left-handed.

With respect to Aw = 0, the question of interest was
whether (dg,pe — @) departed significantly from zero
under the in-phase and anti-phase conditions. As noted,
such deviations would index the symmetry breaking of the
coordination dynamics by the functional asymmetry of the
limbs. Inspection of the data revealed that, of the RH
participants, (¢gpe — ¢y) < O for 13 participants and
(Pstable — Py) > 0 for 7 participants. Of the LH participants,
(Dstable — Py) < 0 for 3 participants and (sepie — Dy) >
0 for 17 participants. For RH participants, the mean value of
(Pstabte — Py) Was —0.031 rad, but this was not significantly
different from zero, #(19) = —1.57, p > .05. For the LH
participants, the mean value of (g — b,) Was 0.064
rad, and was significantly different from zero, #(19) =
3.25, p < .001.
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Thus, compared with the LH participants, the RH partic-
ipants were less uniform as a group because almost half of
them had positive values of (¢gupe — @y)- Given the
convention ¢ = (6 — 6g), the preceding pattern of depar-
tures from perfect in-phase and perfect anti-phase means
that on average, for RH participants, the right hand led the
left hand in 13 “Rr” participants (7 in the in-phase group
and 6 in the anti-phase group) and that for LH participants,
the right hand led the left hand in 3 “Lr” participants (2 in
the in-phase group and 1 in the anti-phase group). Likewise,
for LH participants, the left hand led the right hand in 17
“L1” participants (8 in the in-phase group and 9 in the
anti-phase group) and, for RH participants, the left hand led
the right hand in 7 “RI” participants (3 in the in-phase group
and 4 in the anti-phase group). Chi-square tests were con-
ducted to determine whether the LH and RH participants
would exhibit leading-hand preferences that were different
from what would be expected if there was no bias in the
population toward one hand leading the other. Results in-
dicated that the behavior of the left-leading LH partici-
pants was significantly different from expectation, x*(1,
N = 20) = 9.8, p < .01, whereas the RH participants
were not distinguished with respect to leading hand, x*(1,
N=120)=18,p > .05.

An ANOVA performed on (¢gape — ¢) at Aw = 0 with
handedness and mode as independent variables revealed a
significant effect of handedness with values, as noted ear-
lier, F(1, 36) = 12.48, p < .001, and a significant interac-
tion (in-phase, LH = 0.025 rad vs. RH = —0.015 rad;
anti-phase, LH = 0.103 rad vs. RH = —0.048 rad), F(1,
36) = 4.24, p < .05, indicating that the effect of handedness
was greatest in anti-phase. Given the direction of the inter-
action, an ANOVA performed on g, — ¢yl indicated
that the coordination mode was significant, F(1, 36) = 4.15,
p < .05, with anti-phase resulting in greater phase departure
than in-phase coordination. The phase departure (¢gpe —
¢,) at Aw = 0 was converted into a temporal delay given
the experimental angular frequency of 4.46 rad s~ . The
conversion revealed that the left hand led the right hand by
19.3 ms for the Ll participants and by 11.7 ms for the Rl
participants. Similarly, the right hand led the left hand by
17.0 ms for the Rr participants and by 13.9 ms for the Lr
participants. On the basis of the constituent subgroups’
temporal delays, the LH participants considered as a single
group exhibited a net left-hand lead of 5.4 ms, and the RH
participants exhibited a net right-hand lead of precisely the
same amount.

These results indicate that at Aw = 0, RH participants
as a group were just as likely to lead with the right as
with the left hand, whereas LH participants exhibited a
consistent lead with the left hand. Additionally, handed-
ness was more pronounced in anti-phase coordination
than in in-phase coordination. In summary, performance
under Aw = 0 revealed the presence of a functional
asymmetry between the hands, AH. Interestingly, and per-
haps importantly, this functional asymmetry in terms of
the sign of (¢ — ¢y) did not comply with the more
conventional RH versus LH distinction with the question-

naire-based measure of consistency taken at the outset for
the LH participants.

Turning to the imposed broken symmetry conditions for
which Aw # 0, and retaining the definition of handedness
by self-designation, the results presented in Figure 1 are
replotted in Figure 2 according to the sign of Aw (ie.,
ignoring its actual magnitude) and the absolute magnitude
of phase deviation, |dgpe — ¢yl A three-way ANOVA
(Handedness X Mode X Sign) revealed no main effect of
either sign, F(1, 36) = 2.72, p > .05, or handedness, F(1,
36) = 3.00, p > .05, but a significant interaction between
sign and handedness, F(1, 36) = 30.11, p < .0001. Whereas
the magnitude of | g, — byl Was greater for Aw < 0 than
for Aw > 0 in RH participants, it was greater for Aw > 0
than Aw < 0 in LH participants. Given the convention
Aw = (w; — wy), the preceding interaction means that the
displacement of ¢, from 0 and 7 was greater for RH
participants when the right wrist-pendulum system had the
higher eigenfrequency and greater for LH participants when
the left wrist-pendulum system had the higher eigenfre-
quency. To define Aw as a difference between left hand and
right hand is to impose an extrinsic, geometrical, and arbi-
trary distinction on the system of coordinated limbs. An
intrinsically based and therefore a potentially more mean-
ingful distinction for the interlimb system is to use a func-
tional categorization in terms of preferred (P) versus non-
preferred (NP) hand. Consequently, Aw was redefined as
(wp — wyp), where wp is now the eigenfrequency of the
wrist-pendulum system in the preferred hand and likewise
for wyp. Repeating the Handedness X Mode X Sign
ANOVA yielded a main effect of sign, F(1, 36) = 30.10,
p < .0001, no main effect of handedness, F(1, 36) = 3.00,

.55,

# RH in-phase
® RH anti-phase
o LH in-phase
2 LH anti-phase
T
-A® Aw
(rad s-1)

Figure 2. |y, — ¢, for £Aw (rad/s) as a function of hand-
edness and mode. RH = right-handed; LH = left-handed.
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p > .05, no interaction of sign and handedness, F(1, 36) =
2.76, p > .05, no interaction of sign and mode, F(1, 36) =
3.31, p > .05, and no three way interaction, F(1, 36) = 2.32,
p > .05. Thus, under the convention Aw = (wp — wyp),
Ibgravie — byl Was greater for Aw > 0 than Aw < 0 and by
the same amount in both RH and LH participants.

When the RH group was subdivided into the 13 right-
leading (Rr) and 7 left-leading (RI) participants, a Group (Rr
vs. RI) X Sign ANOVA revealed a similar interaction to
that obtained when group was defined as RH versus LH
participants (Rr, —Aw = 0.496 rad vs. Aw = 0.395 rad;
Rl, —Aw = 0.408 rad vs. Aw = 0.411 rad), F(1, 18) =
4.22, p < .05. Given that this interaction verified the in-
homogeneity of the RH group, the preceding ANOVAs
were repeated with the RH and LH groups of participants
defined by the 13 Rr participants and the 17 LI partici-
pants. For the present task, it seemed as if a contrast be-
tween these two homogeneous groups would provide the
most accurate measure of handedness. There was a main
effect of group, with the Rr participants exhibiting a
larger mean value of ¢y, — ¢,/ than the Ll group,
F(1, 26) = 6.88, p < .01. The interaction of this new
group variable with the sign of Aw = (w; — wg) was
highly significant, F(1, 26) = 36.46, p < .0001. For the
13 Rr participants, |dg,pe — @, Was greater for Aw < 0
than for Aw > 0; for the 17 LI participants, |dg,pe — @yl
was greater for Aw > 0 than for Aw < 0. When the
ANOVA was conducted on Aw = (wp — wyp), the main
effect remained but the interaction disappeared, indicating
that within the natural coordinate system provided by the
dimension of preferred hand, the difference between Aw
> 0 and Aw < 0 was the same for right-leading RH par-
ticipants and left-leading LH participants.

An important feature of the data expressed in Figure 2
(but also in the comparison of Figures la and 1b and
associated analyses at Aw = 0) is that I, — Pyl as a
function of Aw # 0 was greater for ¢, = o than ¢, = 0.
The ANOVA on Handedness X Mode X Sign restricted to
the Aw # 0 conditions confirmed the significantly greater
magnitudes of g,y — ¢,/ for anti-phase coordination,
F(1, 36) = 6.45, p < .02; F(1, 26) = 10.22, p < .01, for the
ANOVA using the Rr and Ll participants. This outcome
concurs with Prediction 4 of Equation 1 regarding |¢gpe —
¢, under conditions in which Aw # 0. Previous research
had not confirmed the prediction of a main effect of coor-
dination mode on |¢g,. — ¢l under either Aw = 0 or
Aw # 0, although numerical differences have been in evi-
dence (e.g., Sternad et al., 1992).

Standard Deviation of Phase

Figure 3 shows the pattern of mean standard deviation
(SD) of ¢ as a function of Aw = (w; — wg) for the in-phase
and anti-phase groups of RH and LH participants. As can be
seen, the overall picture is that of minimal SD¢ under the
symmetry condition of Aw = 0 (with the exception of RH
anti-phase) and increasingly larger SD¢ with deviation of
Aw from 0. This outcome conforms to Prediction 5 of
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Equation 1 and has been observed in previous experi-
ments (e.g., Schmidt, Beek, et al., 1991; Schmidt et al.,
1993). Inspection of Figure 3 also suggests that, consis-
tent with Prediction 6, larger SD¢ occurred for ¢, = =
than ¢, = 0.

SD¢ was analyzed as a function of the sign of Aw =
(0, — wg), ignoring the magnitude of Aw and excluding
Aw = 0. A Handedness X Mode X Sign ANOVA revealed
that SD¢ was less for LH participants (0.19 rad) than RH
participants (0.25 rad), F(1, 36) = 15.40, p < .001, was less
for ¢, = 0(0.20 rad) than ¢, = 7 (0.24), F(1, 36) = 9.46,
p < .001, and was less for Aw > 0 (0.21 rad) than for Aw <
0 (0.23 rad), F(1, 36) = 4.46, p < .05. The significance of
the three-way interaction, F(1, 36) = 9.52, p < .01, encour-
aged the separate analysis of RH and LH participants. For
RH participants, there was significantly greater SD¢ for
¢, = wthan ¢, = 0, F(1, 18) = 6.08, p < .02, significantly
greater SD¢ for Aw < 0 than for Aw > 0, F(1, 18) = 6.42,
p < .02, and a significant Mode X Sign interaction, F(1,
18) = 7.35, p < .01. The interaction was produced by the
mode difference at ~Aw (p < .01) and the sign difference
at ¢, = 7 (p < .01). For LH participants, only the anti-
phase (¢, = m) versus in-phase (¢, = 0) contrast was
significant, F(1, 18) = 4.54, p < .05.

In summary, for both RH and LH participants, ¢, = 7
was associated with larger SD¢, but only for RH partici-
pants was there an effect of the sign of Aw. Specifically,
when ¢, = 7, RH participants exhibited greater SD¢ under
Aw < 0 than under Aw > 0. Stated differently, the anti-
phase coordination of RH participants was less stable when
the preferred hand had the higher gravitational eigenfre-
quency. For LH participants, mode stability was unaffected
by the contrast of Aw < 0 and Aw > 0. Importantly, another
ANOVA showed that the preceding statistical pattern of
effects on SD¢ held identically for the contrast between the
homogeneous groups of 13 Rr and 17 Ll participants.

Phase and Its Standard Deviation for Inconsistent
and Consistent LH Participants

An ANOVA on l¢gp. — ¢yl for the LH participants with
consistency (CLH vs. ILH), and Aw as independent vari-
ables, revealed no main effects or interactions (p > .05).
In contrast, an ANOVA on SD¢ with consistency, mode,
and Aw as independent variables revealed a main effect of
consistency, with ILH participants exhibiting larger SD¢
than CLH participants (0.187 rad vs. 0.167 rad), F(1, 16) =
4.18, p = .057. There was also a significant interaction
between consistency and mode (CLH, in-phase = 0.153 rad
vs. anti-phase = (.187 rad; ILH, in-phase = 0.188 rad vs.
anti-phase = 0.186 rad), F(1, 16) = 4.74, p < .05. When the
ANOVA was repeated under Aw = 0, the contrast in SD¢
between ILH and CLH participants was especially pro-
nounced (0.122 rad vs. 0.106 rad), F(1, 16) = 7.69, p <
.01, as was the interaction between consistency and mode
(CLH, in-phase = 0.096 rad vs. anti-phase = 0.120 rad;
ILH, in-phase = 0.132 rad vs. anti-phase = 0.115 rad),
F(1, 16) = 13.83, p < .01. A further ANOVA verified
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Figure 3. Standard deviations of ¢ as a function of Aw, handedness, and coordination mode (¢,,).

RH = right-handed; LH = left-handed.

that only under in-phase were the ILH participants signifi-
cantly more variable than the CLH participants, F(1, 8) =
19.12, p < .01,

General Discussion

It has been observed that some of the most pronounced
manual asymmetries are evident in tasks that vary only the
timing demands on each hand, that is, in the absence of
contrasting spatial and manipulation requirements (Peters,
1985). In our experiment, participants had to achieve 1:1
frequency locking of two contralateral limb segments each
constrained to oscillate in a plane parallel to the body’s
sagittal plane. The explicit task demands for the two hands
were identical in all conditions of the experiment. The
implicit task demands, however, were made nontrivially
different for the two hands by loading them differentially.
The manipulation of Aw meant that the 1:1 frequency lock-
ing had to be achieved in the face of extrinsically imposed
frequency competition. Given this competition, the tempo-
ral patterning of neuromuscular activity in the two limbs
could not be identical. Congruent with Peters’s (1985, 1987)

observation, our experiment—involving the same overt spa-
tial and manipulation demands on the two hands but differ-
ent covert timing demands—revealed marked manual asym-
metries. LH and RH participants in our experiment differed
in several ways.

With respect to the eight predictions from Equation 1
listed in the introduction, we evaluated and confirmed Pre-
dictions 1-4. With respect to the contrast between LH and
RH participants, the patterning of the predicted outcomes by
the additional parameter of handedness revealed the follow-
ing. The dependency of ¢y, on the sign of Aw = (@, —
wg) indicated that Aw < 0 produced larger (dgapie — D)
for RH participants and Aw > 0 produced larger (¢g,pe —
¢,) for LH participants. As measured by the average mag-
nitude of I,y — ¢y, RH participants had greater depar-
tures from intended phase than did LH participants. The
variability of bimanual coordination patterns as indexed
by SD¢ indicated that this was greater for RH than LH
participants. There was also greater SD¢ for ILH than for
CLH patticipants. Importantly, although ILH participants
were distinguished from CLH participants, ILH partici-
pants tended to be also distinguished from RH partici-
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pants. Discussion follows of the implications of the pre-
ceding contrasts for understanding handedness in
bimanual rhythmic coordination. The discussion is con-
ducted in the context of two hypotheses about AH devel-
oped with respect to Equation 1.

Hypothesis 1: AH as a Differential Detuning

We consider first the departure of ¢y, from ¢, when
Aw = 0. If the dynamics observed in the experiment fol-
lowed from Equation 1, then the experimental observation
Of (Pstapte — Py) # 0 when Aw = 0 could not have arisen
via the a and b coefficients. As is evident from Prediction
1 of Equation 1, if Aw were equal to 0, then regardless
of the value of b/a (see Footnote 1), (dgupe — 0) and
(dstable — ™) would both be equal to 0. Accordingly, the
fact that (dgapie — ¢y) # 0 when Aw = 0 might be inter-
preted to mean that the functional asymmetry between the
hands is a differential “detuning” of the wrist-pendulum
systems. That is, the individual eigenfrequencies were
each slightly modified or detuned rendering the nominal
Aw = 0 as a functional Aw # 0. To conform to the ob-
served patterning of (g — @), the right wrist-pendu-
lum systems of the 13 right-leading RH participants and
the 3 right-leading LH participants must have been of
higher natural frequencies than the corresponding left
wrist-pendulum systems. Likewise, the left wrist-pendu-
lum systems of the 17 left-leading LH participants and 7
left-leading RH participants must have been of higher nat-
ural frequencies than the corresponding right wrist-pendu-
lum systems. In more specific terms, the functional asym-
metry is tantamount to two different scalar multiples, A
and p, of the left w; and right wy gravitational eigenfre-
quencies, respectively. With w; = wg, (Ao, — pog) is
negative for right-leading participants because A < p, and
positive for left-leading participants because A > p. From
the perspective of a rhythmic movement unit as a self-
sustained oscillator, differences in the detuning scalars A
and p would have to reflect differences in the oscillator’s
elastic and friction functions, considered singly or in
combination (e.g., Beek & Beek, 1988; Kay, Kelso, Saltz-
man, & Schoéner, 1987; Kay, Saltzman, & Kelso, 1991;
Turvey, 1990). For example, a difference in elastic func-
tions, such that the left stiffness is greater than the right
stiffness for LH participants and vice versa for RH partic-
ipants, would produce the observed handedness depen-
dence of (Pgiabie ¢¢)

We now discuss how the detuning hypothesis addresses
the interaction of Iy, — ¢l With the sign of Aw. The
interpretation of detuning by A and p speaks to the major
result that for RH participants, | @y, — ¢, was greater for
Aw < 0 than for Aw > 0, whereas for LH participants
Igiante — Pyl Was greater for Aw > 0 than for Aw < 0 and
that this interaction dissolved when Aw was redefined as
(wp — wyp). The implication of the dissolution of the
interaction is that the inequality |A®yigher — PWiowerl =
IA@pgwer = PWhighe,! for LH participants was of the same
magnitude as the inequality |p@pigher — A®iowerl = [P®1ower

— AWy, for RH participants. These inequalities mean
that Aw was (a) amplified for both RH and LH participants
when the wrist-pendulum system of higher eigenfrequency
was in the preferred hand and (b) diminished for both RH
and LH participants when the wrist-pendulum system of
higher eigenfrequency was in the nonpreferred hand. By
Equation 1, ceteris paribus, larger magnitudes of Aw engen-
der larger magnitudes of |dgupe — ¢,). Accordingly, over
pairs of wrist-pendulum systems, the magnitudes of b p;e
— ¢, associated with positive values of (wp — wyp) should
be larger than the magnitudes of |dg,,e — ¢,/ associated
with negative values of (wp — wpp).

An additional empirical fact suggests a difference be-
tween the LH and RH participants with respect to the
control variables determining ¢,;,.. The fact in question
was that, on the average, the departure of actual from
intended phase, [ — ¢yl, Was greater for RH partici-
pants than LH participants. From the perspective of Equa-
tion 1, this contrast could come about because the effective
magnitude of Aw (dictated by the values of A and p in
addition to the values of the eigenfrequencies w; and wg)
was greater for RH than for LH participants, the magnitude
of b/a was greater for LH participants than for RH partici-
pants, or both differences were at play simultaneously.

Finally, consider the dependence of SD¢ on handedness
from the perspective of the detuning hypothesis. Consistent
with the greater average value of Iy, — ¢y for RH
participants was the observation that SD¢ was greater, on
average, for RH participants. From Equation 1, the greater
stability of interlimb coordination in the LH participants
may be attributed either to smaller magnitudes of the effec-
tive Aw or a larger average b/a relative to the RH partici-
pants. The condition largely responsible for the SD¢ differ-
ence was ¢, = m, Aw < 0, for RH participants. That is, RH
participants found it particularly difficult to maintain the
spatiotemporal pattern of anti-phase when the preferred
hand had the higher eigenfrequency.

Hypothesis 2: AH as Nonisotropic Coupling

The departure point for the second hypothesis is that
Equation 1 is incomplete. Equation 1 is a motion equation
expressible as the negative of the phase derivative of a
particular quantity V(¢) that functions like a potential, that
is,

b= —dv(¢)/d. ®

In approximating V(¢) for 1:1 frequency locking of two
identical body segments, Haken et al. (1985) were con-
strained by the empirically demonstrated asymmetry of
in-phase and anti-phase as the stable coordinated states of a
dimensionally symmetrical system. The proposed equation

V() = — Awd — acos(dp) — bcos(2¢) )

provides an “energy landscape” characterized for the con-
dition of Aw = 0 by a global minimum at ¢ = 0 and local
minima at ¢ = *+ 7 as shown in Figure 4. This landscape is
modulated by w, such that at a critical value (a = 4b when
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Figure 4. Equation 9 with Aw = 0.

Aw = 0), the local minima are annihilated and only the
attractor at ¢ = 0 remains (see Haken et al., 1985). When
Aw = 0, V(¢) is symmetric, that is, V(¢) = V(—¢). The
hypothesis to be pursued here is that AH is interpretable as
a quantity that, when added to Equation 9 under the condi-
tion of Aw = 0, breaks the equation’s symmetry, that is,
renders V(o) # V(—¢).

A potentially important insight into the form taken by the
hypothesized symmetry breaking quantity comes from ef-
forts to model the (“fictive”) swimming action of the lam-
prey spinal cord. Evidence shows that within the spine of
this primitive fish, oscillators of the same segment are in
anti-phase and that a constant nonzero phase difference
(0 < ¢ < m) is maintained between ipsilateral oscillators of
two neighboring segments (e.g., Cohen & Harris-Warrick,
1984; Cohen & Wallén, 1980). Equation 3 was advanced by
Cohen et al. (1982) to model the intrasegmental and inter-
segmental coupling of two oscillators and, on extension, to
model the chain of coupled segmental oscillators producing
the uniform travelling wave that characterizes the lamprey’s
swimming, A “uniform travelling wave” means that the
nonzero phase difference between neighboring oscillators is
of (approximately) the same magnitude everywhere along
the chain. According to Equation 3, phase differences other
than 0 and 7 between two coupled oscillators can arise only
when Aw # 0. Consequently, for there to be a nonzero
phase difference between an oscillator in segment i and an
ipsilateral oscillator in segment j, Equation 3 requires that
oscillators i and j differ in their natural frequencies. The
evidence suggests, however, that the natural frequencies of
the oscillators at each segment of the chain are the same
rather than different (Kopell, 1988; Kopell & Ermentrout,
1986). The phase differences between neighboring seg-
ments of the lamprey spine must arise, therefore, from
anisotropy in the coupling rather than from a gradient of
natural frequencies.

The kind of coupling behind the derivation of Equation 3
is referred to as diffusive coupling, which is defined for-
mally as an interaction between two oscillators that goes to
zero when ¢ = 0 or ¢ = 7 (Cohen et al., 1982; Kopell,
1988; Murray, 1990; Rand et al,, 1988). The coupling
favored by Kopell (1988; Kopell & Ermentrout, 1986) is

referred to as synaptic coupling and is formally defined as a
two-oscillator interaction that is nonzero when ¢ = 0 or
¢ = = (metaphorically, neurons associated with the two
oscillators are always passing signals back and forth). Min-
imally, synaptic coupling requires another periodic term in
Equation 3 that contrasts with the symmetry of the sine term
(an odd function)—in brief, it requires a cosine term (an
even function). The two-oscillator motion equation derived
from synaptic coupling therefore includes Equation 3:

¢ = Aw — Kisin(¢) — K,cos(¢) (10)

It is evident from Equation 10 that when ¢ = O or ¢ = m,
the summed effect of the two coupling terms is not zero. A
less apparent feature of Equation 10 is that when Aw = 0,
neither ¢ = 0(K,, K, > 0) nor ¢ = m(K;, K, < 0) are stable
solutions. This latter feature is the important one for accom-
modating the fact that there are phase differences between
segments of the lamprey spinal cord in the absence of a
natural frequency gradient. It is also the feature that is of
special importance to our present concerns, namely, under-
standing the basis for systematic deviations in LH and RH
participants from ¢ = 0 and ¢ = 7 when Aw = 0. We can
develop this important feature of Equation 10 most usefully
in the context of potential functions.
The potential function for Equation 3 is

V() = — Awd — Kcos(P) (11)
and that for Equation 10 is

V($) = — Awd — Kjcos(d) + Kysin(g). (12)

Figure 5 shows the contrast between the two potential
functions for in-phase coordination (K > 0 in Equation 11
and K, > 0 in Equation 12). Whereas Equation 11’s mini-
mum is at ¢ = 0, the minimum of Equation 12 is at ¢ < 0
when K, is positive and at ¢ > 0 when X, is negative. From
Figure 5 one might infer that the basic patterns of data

¢ (rad)

Figure 5. The potential functions for Aw = 0 under diffusive
(Equation 11) and synaptic (Equation 12) coupling. The function
with its minimum displaced to the left of ¢ = 0 is Equation 12
with K, > 0 and the function with its minimum displaced to the
right of ¢ = 0 is Equation 12 with K, < 0. The function with its
minimum at ¢ = 0 is Equation 11.
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associated with handedness that have been obtained in the
current experiment follow from a symmetry-breaking term
such as K,sing in Equation 12, with K, > 0 defining RH
and K, < O defining LH. The data show immediately,
however, that the requisite symmetry-breaking term can-
not be identical to K,sin¢. With Aw = 0, RH participants
undershot both ¢ = 0 and ¢ = 7 and LH participants
overshot both ¢ = 0 and ¢ = 7 (see Figure 1 and corre-
sponding analyses). By contrast, numerical analyses of
Equation 10 reveals that when K, > 0, g, iS to be
found at ¢ < 0 and ¢ > 7 and that when K, < 0, dyupse
is to be found at ¢ > 0 and ¢ < 7. What is needed to
produce either an overshoot of both attractors or an
undershoot of both attractors depending on the sign of
the coefficient is an additional sine term of the form
K,sin(2¢).

Following from the preceding analyses and arguments,
we propose that Equation 9, the potential function underly-
ing Equation 1, be amended to read

V(¢) = — Awd — acos(d) — bcos(2¢)
+ csin(¢) + dsin(2¢), (13)

where the final two right-hand terms represent the symme-
try breaking of interlimb dynamics by AH. That is, the
proposed potential function for 1:1 frequency locking in
human interlimb rhythmic coordination is simply the sum of
the first three (n = 0, 1, and 2) even (cosine) and odd (sine)
terms in the Fourier series (the Oth sine term is equal to
zero). Figure 6 shows Equation 13 with Aw = 0 ford > 0
(by hypothesis, RH) and d < 0 (by hypothesis, LH) and
with @ > 0, b > 0, and ¢ = 0. The minima of the potential
wells are displaced from 0 and 7 in the negative direction
by d > 0 and in the positive direction by d < 0. That is,
Figure 6 shows a departure of ¢, from ¢, when Aw =
0 whose direction depends on the sign of AH.

We now consider how the interpretation of AH as a
symmetry breaking term in the governing potential function
addresses the experimental facts evident in Figures 1, 2, and
3. Predictions about ¢, and SD¢ can be made from the

V (rad s'!)

¢ (rad)

Figure 6. Equation 13 with Aw = 0 and d = 1 (dark curve) and
d = —1 (light curve).

amended form of Equation 1 that follows from Equation 13,
that is,

¢ = Aw — asin(d) — 2bsin(2$) — ccos(d)
~ 2dcos(2¢) + \JQ & (14)

Recalling the methods applied to Equation 1, numerical
solutions to Equation 14 (excluding the stochastic force) for
¢ = 0 yield the values of ¢ that are stationary for any given
parameter values. If dgp/d¢ is negative at a stationary state
then that state is stable with degree of stability indexed by
ldd/dd). SD¢ is proportional to the inverse of Idd/ddl
(Schoner & Kelso, 1988). A range of suitable parameter
settings for a and b in Equation 14 are suggested by previ-
ous evaluations of Equation 1 as a model of human inter-
limb coordination (e.g., Schoner et al., 1986). With respect
to ¢ and 4, their magnitudes are likely to be small relative to
a and b. Whereas a and b are the coefficients of terms that
determine the fundamental in-phase and anti-phase coordi-
nation dynamics, ¢ and d are the coefficients of terms that
break the symmetry of those dynamics but do not impair
them. Because d is the more important handedness coeffi-
cient, producing the observed directions of fixed-point drift
around both 0 and 7, we can, for present purposes, set ¢ to
zero without any great loss of generality. Numerical analy-
sis of Equation 14 reveals that when d is closely similar in
absolute value to g and b, the effect of sign is such as to lead
always to undershoot (when d > 0), or always to overshoot
(when d < 0), of ¢ = 0 and ¢ = = for all reasonable Aw
(e.g., —3 = Aw = 3). That is, the handedness term overrides
Aw, contrary to the data presented in Figure 1. Numerical
analyses reveals that to preserve the effect of the sign of Aw,
d < a and d < b. Further constraints on d are suggested by
the facts that the overshoot by LH participants and the
undershoot by RH participants of ¢ = 0 and ¢ = = are
systematic but small at Aw = 0, with the magnitude greatest
for LH. The implication is that whereas d is small relative to
a and b for both RH and LH, it is smaller for RH. Finally,
the quantitative differences between LH and RH partici-
pants (evident in Figures 2 and 3) and the order and qual-
itative structure of SD¢ (evident in Figure 3) suggest a
further difference between RH and LH participants in the
b/a ratio (see discussion of Equation 1).

Figure 7 depicts the values of g,y — ¢l and SDd
(x ld/dd| 1) generated by Equation 14 for the Aw values
of the current experiment with LH parameters of a = 0.5,
b =1.45,c =0, and d = —0.08, and RH parameters of a =
0.5, b = 1.15, ¢ = 0, and d = 0.05. That is, the contrast
between LH and RH observed in our experiment can be
drawn in the sign and magnitude of d and the magnitude of
b/a. Inspection of Figure 7 reveals that the preceding pa-
rameterization of Equation 14 captures the qualitative char-
acteristics of the data expressed in Figures 2 and 3. Not
evident from inspection of Figure 7 is the fact that, so
parameterized, the equation also predicts a larger effect
of handedness for anti-phase (0.055 rad) than in-phase
(0.043) when Aw = 0, consistent with observation in our
experiment.
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Figure 7. Predictions of Equation 14 with LH parameters ofa=05,b=145c=0,andd =
—0.08 and RH parameters of a = 0.5, b = 1.15, ¢ = 0, and d = 0.05. Left panel corresponds to
Figure 2. Right panel corresponds to Figure 3. RH = right-handed; LH = left-handed.

Relation Between Leading Hand and Handedness

Although estimates vary, a reasonable mean value for the
incidence of right-handedness in the general population is
approximately 88%, and of left-handedness it is approxi-
mately 12% (Porac & Coren, 1981). Given that there were,
in the current experiment, 13 Rr and 7 Rl participants
(classified as RH individuals), the implication is that 57.2%
RH will exhibit a right-hand lead and 30.8% will exhibit a
left-hand lead. Similarly, given that there were, in our
experiment, 17 L1 and 3 Lr participants (classified as LH
individuals), the implication is that 10.2% LH will exhibit a
left-hand lead and 1.8% will exhibit a right-hand lead.
Consequently, for the general population (regardless of
prior classification), it can be argued that the overall bias
toward the right hand is 59% and the overall bias toward the
left hand is 41%. These relative proportions of the popula-
tion exhibiting a left-lead or right-lead are clearly less
disparate than the incidences of LH and RH typically re-
ported. A test to determine whether the left-lead and right-
lead proportions were different from what would be ex-
pected if there was no bias in the population toward a
particular hand was insignificant, x* (1, N = 100) = 3.24,
p = .07). That is, by our analysis, a randomly sampled
participant from the general population (RH plus LH par-
ticipants) is equally likely to exhibit a left- or right-lead.

An argument of no bias in the general population toward
either the left or right hand under simple task constraints of
bimanual coordination finds support in experimental obser-
vations of a left-hand bias and in experimental results that
are ambivalent regarding any particular bias. Thus, it has
been suggested that there is a left-hand specialization for
perceptually guided reaching, especially in some nonhuman

primates (MacNeilage, Studdert-Kennedy, & Lindblom,
1987), that the left hand typically starts a bimanual gesture
(Guiard, 1987b), that the left hand produces smaller con-
stant error in reaching for a small target (Guiard, Diaz, &
Beaubaton, 1983), and that the left hand is more forceful
and variable in finger tapping than the right hand (Todor &
Kyprie, 1980; Todor & Smiley, 1985). Coupled with the
observations of a left-hand bias is the view that LH partic-
ipants exhibit less of a contrast between the hands than RH
participants (e.g., Hammond, 1990b; Peters & Durding,
1979), although this view was not corroborated by the
current experiment or by a similar one with another 20 RH
and 20 LH participants (Treffner, 1993).

Other inconsistencies across studies reinforce a cautious
attitude to the standard view. Flowers (1975) found no
differences between LH and RH participants on a ballistic
tapping task using mean errors of unimanual tapping as a
criterion, whereas Wolff et al. (1977) found that the left
hand was more variable in timing than the right hand for
both RH and LH participants. Relatedly, it has been found
that tapping with the nonpreferred hand produces more
variable timing than tapping with the preferred hand (Peters,
1980; Peters & Durding, 1978, 1979; Truman & Hammond,
1990). This hand asymmetry may be progressively accen-
tuated under task constraints that require a participant to
perform at increasingly greater rates (Truman & Ham-
mond, 1990). In an investigation comparing normal and
dyslexic individuals, normal RH participants led consis-
tently with the right hand at each of three pacing frequen-
cies in 1:1 finger tapping, but RH dyslexic participants
led equally with both hands (Rouselle & Wolff, 1991). In
anti-phase coordination, normal participants led with the
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right finger but only at the two higher frequencies; dys-
lexic participants showed no asymmetries under anti-
phase, regardless of frequency.

The research on dyslexic individuals suggests compli-
cated interactions between handedness and other factors and
it underscores the understanding that the RH or LH desig-
nation does not necessarily define a homogeneous category.
Other research is similarly suggestive. In 2:1 bimanual
finger tapping, LH participants performed equally well in
L1:R2 as in L2:R1, whereas RH participants performed
better in L1:R2 (Peters, 1985, 1987; Peters & Servos, 1989;
Webster, 1990). Conversely, between-hand asymmetries
were reported for LH participants during the tapping of
complex rhythms based on the self-reports of how the
individual felt following performance (Ibbotson & Morton,
1981). In contrast to Ponton’s (1987) conclusion that
strongly RH and LH individuals perform less well than
individuals without strong hand preferences (i.e., inconsis-
tent participants), it has been found that CLH participants
differ in neither speed nor quality of performance from ILH
participants but that CLH and ILH exhibit differences in
opposite directions that tend to cancel each other out under
certain task conditions (Peters, 1990a, 1990c, 1991, 1992;
Peters & Servos, 1989). Results of this latter kind suggest
that CLH and RH participants may provide performance
“mirror images” of each other. Furthermore, ILH partici-
pants performed much like RH participants in tasks requir-
ing a dissociation between fine manipulative skill and gross
movements requiring strength such as in throwing (Peters &
Servos, 1989). Our results involved a similar division of the
LH participants into CLH and ILH subgroups. In contrast to
Peters and Servos’s (1989) failure to reveal a difference
between ILH and CLH participants, ILH participants in the
current experiment exhibited greater SD¢ than CLH partic-
ipants under in-phase coordination indicating differential
stability profiles for the two LH subgroups. In further con-
tradiction of the mirror image hypothesis, and in contrast
with the results of Peters and Servos (1989), RH participants
were significantly different from CLH participants in SD¢.
These results therefore support the further subdivision of the
LH population into those with either consistent or inconsis-
tent left-hand preference and suggest that this division is
associated with performance asymmetries in a basic form of
motor coordination.

The primary lesson from the preceding review is that the
manifestation of handedness is task and subject dependent.
Consequently, the conditions responsible for the difference
in d between LH and RH in the modeling of the current data
by Equation 14 must be sought within the current experi-
mental task and participants. Of possible relevance is the
hypothesis that hand differences arise from hemispheric
priming by attention or prior hemispheric activity (Kins-
bourne, 1970). Consistent with this hypothesis, greater pro-
ficiency in bimanual coordination is found when the right
hand is allocated the more demanding task (Peters, 1981,
1985) or when it leads the actions in a bimanual sequencing
task (Hicks, Provenzani, & Rubstein, 1975; Oldfield, 1969;
Peters, 1983; Summers & Sharp, 1979). The present 1:1
coordination task was sufficiently simple that participants

may not have attended to any particular hand (by instruc-
tion, neither hand was attended to visually in the course of
the experiment). As a consequence, there would have been
no hemispheric priming. If 1:1 rhythmic coordination is an
activity that draws predominantly on the right hemisphere’s
hypothesized manipulospatial capabilities (Bradshaw, Bur-
den, & Nettleton, 1986; Haaland & Harrington, 1989),
rather than the left hemisphere’s hypothesized temporal
sequencing capabilities, then it is feasible to imagine that
the absence of priming countered a reliable right-hand-lead
in the RH participants (left hemisphere dominance was
canceled by right hemisphere use) and facilitated a predom-
inant left-hand-lead in LH participants.

The foregoing interpretation of a bias toward a hand may
be stated in terms of the temporal delay between hands
given the inference that this delay may reflect interhemi-
spheric transfer. In a bimanual task in which participants
traced elliptical trajectories in the frontoparallel plane under
either in-phase or anti-phase coordination, Stucchi and
Viviani (1993) found a phase lag of the nondominant hand
relative to the dominant hand of approximately 23 ms for
both LH and RH participants.” They argued that lags of such
magnitude could not have arisen solely from dynamical
factors, such as a stiffness difference between the hands
(Bingham, Schmidt, Turvey, & Rosenblum, 1991; our Hy-
pothesis 1). A more plausible explanation, in their view, was
that the 23-ms lag reflected the time scale of interhemi-
spheric transfer of trajectory planning signals. In the current
task, lag times were comparable in that the left hand led the
right hand by 19.3 ms in the LI participants and by 11.7 ms
in the Rl participants, whereas the right hand led the left
hand by 17.0 ms in the Rr participants and by 13.9 ms in the
Lr participants. However, in contrast to Stucchi and Vivi-
ani’s results, only within the LH group was there a predom-
inant direction of lag. Thus, in the case of the RH partici-
pants, it is not clear how one would infer the direction in
which trajectory planning signals are passed.’

The preceding analyses in terms of the priming and in-
terhemispheric transfer hypotheses suggest ways in which
the LH versus RH aspects of our data might be viewed.
They do not, however, add substantially to the overall
understanding of the asymmetry of interlimb dynamics pro-
vided by Equation 14. A deeper interpretation of the
conditions dictating the sign and magnitude of 4 (and,
presumably, of ¢) is more likely to follow from careful
experimentation within the context of Equation 14 and its
many specific predictions.

2 Stucchi and Viviani (1993) found that phase lags in the ellipse
tracing task increased for anti-phase coordination as a function of
w.. A dependency of Iy, — ¢, on o, is predicted from
Equation 14.

3 In Stucchi and Viviani (1993), each participant performed only
a single trial in each condition. Therefore, it is possible that further
trials would have revealed less consistency and possibly a different
direction of phase lag.
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Conclusion

In this research we have shown how a basic and easy-to-
achieve interlimb rhythmic coordination—the 1:1 frequency
locking that typifies locomotion patterns—can provide a
medium for examining the functional asymmetry of the
body. Left—right asymmetries in both left- and right-handers
were plainly evident. Within the context of the dynamics
expressing this interlimb rhythmic coordination, the func-
tional asymmetry AH is tantamount to an asymmetry in
either (a) the detuning parameter, if the dynamics abide by
Equation 1, or (b) the governing potential, leading to aniso-
tropic coupling, if the dynamics abide by Equation 14. For
reasons of generality and precision of predictions, we lean
toward the latter interpretation of AH. In combining the
experimental and theoretical insights of Haken and col-
leagues (Haken et al., 1985; Kelso et al., 1990; Schoner et
al., 1986) with those of Kopell and colleagues (Cohen et al.,
1992; Ermentrout & Kopell, 1991; Kopell, 1988; Kopell &
Ermentrout, 1986, 1990), Equation 14 provides a compact
account of the functional broken symmetry of the body as
an intrinsic and, one suspects, essential component in the
assembling of interlimb coordination patterns.

The simplicity of our experimental task in conjunction
with Equation 14 may provide a context for testing issues of
concern to investigators of cognition in general rather than
handedness in particular. For example, there are sugges-
tions, noted earlier, that the differential sensitivity of the
hands may involve attentional demands (e.g., Peters, 1985,
1987; Peters & Schwartz, 1989). It would be possible to
have participants perform bimanual rhythmic coordination
with varying degrees of attention under the maximally sen-
sitive condition of imposed symmetry #Aw = 0) and to
search for an interaction of attentional load with handed-
ness. In addition, the sensitivity of the task in terms of
fluctuation measures would seem to make it appropriate for
investigating issues regarding the relation of manual spe-
cialization to the cerebral control of speech (Hammond,
1990a; Peters, 1990b; Shankweiler & Studdert-Kennedy,
1975). Under a dynamical systems perspective using finger-
tapping tasks, major differences have been seen between
normal individuals and left- and right-handed stutterers
(Webster, 1990), dyslexic individuals (Rouselle & Wollff,
1991), and, in a continuous finger oscillation task, between
normal and split-brain individuals (Tuller & Kelso, 1989).
The distinct advantage of experimental manipulations
within the context of a well-formulated dynamics of biman-
ual coordination is the promise that observed effects can be
given precise interpretations in the vocabulary of competi-
tive and cooperative dynamical processes.
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